ответ: АВС=94 град Можно решить в двух вариантах.Можно решить в двух вариантах. В D А С Дано: ∆ АВС СD – биссектриса ∟АDС=112° ∟BCD=18° Найти: ∟ АВС = ? Решение: 1 вариант: ∆ АВС=180°= ∟ВАС+ ∟ АВС+ ∟ АСВ. Отсюда ∟ АВС = 180 – (∟ВАС+ ∟ АСВ) ∟BCD=∟АCD ∟ АСВ= ∟BCD+∟АCD Т.к. СD – биссектриса и делит ∟ АВС пополам, то ∟BCD=∟АCD=18°. Тогда ∟ АСВ=18+18=36°. ∟ВАС=∟DАC ∟DАC= 180 – (∟АCD+∟АDC)=180-(18+112)=50°. ∟ АВС=180-(50+36)=94° 2 вариант: ∟ АВС=∟CBD ∟CBD=180-(∟BCD+∟BDC) ∟BDC=180 -∟АDC (∟АDB –смежный угол) = 180-112=68° ∟CBD=180-(18+68)= 94°
s9152992722344
13.11.2022
1. В любой прямой призме проекция диагонали призмы на ее основание - диагональ основания. Следовательно, сечение, проходящее через диагональ призмы и её проекцию на основание - это прямоугольник. 2. Диагональное сечение призмы - прямоугольник ВВ1D1D. АА1=AD=2√3. Значит высота призмы равна 2√3. Диагональ призмы найдем по Пифагору: BD=√(AD²+AB²). АВ=DC (противоположные стороны основания). BD=√(12+25) = BD=√37. Площадь сечения равна S=BD*BB1 =√37*2√3 =2√111. 3. Проведем через сторону ВС сечение ВСН, перпендикулярное ребру АА1.Тогда ВН и СН - высоты боковых граней АА1В1В и АА1С1С соответственно и зная площади этих граней, найдем эти высоты. ВН=Saa1b1b/AA1 = 80/10=8см. СН=Scaa1c1/AA1 = 40/10=4см. По теореме косинусов найдем сторону ВС: ВС=√64+16-2*32*(-1/2) = √112 = 4√7. Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра. Периметр сечения у нас равен Рbch=4+8+4√7=(12+4√7)см. Sбок=(12+4√7)*10= 40(3+√7)см².
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Высота правильной четырехугольной пирамиды равна 4 см, а её апофема образует с высотой угол 45 градусов. Найдите: площадь основания пирамиды.