Решение. Возможны два случая взаимного расположения прямой и окружностей.
1. Пусть окружность с центром О1 имеет радиус r , окружность центром O2 имеет радиус R, а окружность с центром O имеет радиус x и касается двух данных окружностей и их общей внешней касательной a.
Обозначим через A, B и C точки касания окружностей с прямой a, а через K, M и N — точки касания самих окружностей. Отрезки O1A, O2B и OC перпендикулярны прямой a как радиусы, проведенные в точки касания.
Опустим перпендикуляр O1D из центра меньшей из данных окружностей на радиус O2B большей окружности и перпендикуляры OE и OF из точки O на радиусы O1A и O2B. Поскольку O1A // (палочи прямые) O2B , точки E, O и F лежат на одной прямой, а так как O1DFE — прямоугольник, то O1D=EF.
(R+r)^2 - (R-r)^2 (все выражение под корнем) = (r+x)^2 - (r-x)^2(все выражение под корнем) = (R+x)^2 - (R-x)^2;
2*Rx (Rx под корнем) = 2* rx (rx под корнем) + 2*Rx (Rx под корнем)
2. Пусть теперь окружность с центром O1 имеет радиус R, окружность с центром O имеет радиус r, а окружность центром O2 имеет радиус x и касается двух данных окружностей и их общей внешней касательной a (см. тот же рисунок). Аналогично случаю 1 имеем:
(x+R)^2 - (x-R)^2 (все выражение под корнем) = (R+r)^2 - (R-r)^2 (все выражение под корнем) + (x+r )^2 - (x-r)^2(все выражение под корнем) ;
2*Rx(Rx под корнем) = 2* Rr(Rr под корнем) +2*rx(rx под корнем)
vdnh451
02.09.2021
А вот вам такое решение (уж и не знаю, как вы к нему отнесетесь :)) Дополнительно я обозначу центры окружностей О1 и О2, и точку пересечения общей касательной в точке М с АВ, как Р. Легко увидеть, что угол АМВ прямой (доказать это есть много например так - O1A II O2B, поэтому сумма углов AO1M и BO2M равна 180°, а угол МАВ равен половине угла AO1M, угол MBA - половине угла MO2B, то есть их сумма 90°). Кроме того, Р - середина АВ (все касательные из точки Р равны между собой :) ). То есть МР - медиана прямоугольного треугольника АМВ. Поскольку это "египетский" (то есть подобный треугольнику 3,4,5) треугольник с катетами 6 и 8,то АВ = 10, и МР = АВ/2 = 5. По той же самой причине (сумма углов AO1M и BO2M равна 180°) треугольник О1РО2 тоже прямоугольный, так как точка Р лежит на биссектрисах этих углов. Более того, поскольку, например, угол РО1М равен половине угла АО1М, то есть равен углу МАВ, то треугольники МАВ и О1РО2 подобны. То есть О1РО2 - тоже "египетский" треугольник, подобный (3,4,5). При этом медиана треугольника МАВ, то есть МР = 5; является высотой к гипотенузе треугольника О1РО2, так как касательная МР перпендикулярна линии центров О1О2. А радиусы О1М и О2М - это отрезки, на которые высота РМ делит гипотенузу О1О2. Итак, требуется найти такой "египетский" треугольник, у которого высота к гипотенузе равна 5. У обычного "египетского" треугольника высота равна 3*4/5 = 2,4; а отрезки, на которые высота делит гипотенузу, равны 1,8 и 3,2; (уж посчитайте, если не знаете :)) поэтому коэффициент подобия равен 5/2,4; а искомые радиусы О2М = 1,8*5/2,4 = 15/4 и O1M = 3,2*25/12 = 20/3; Легко проверить, что О1М*О2М = 5^2;
Решение.
Возможны два случая взаимного расположения прямой и окружностей.
1. Пусть окружность с центром О1 имеет радиус r , окружность центром O2 имеет радиус R, а окружность с центром O имеет радиус x и касается двух данных окружностей и их общей внешней касательной a.
Обозначим через A, B и C точки касания окружностей с прямой a, а через K, M и N — точки касания самих окружностей. Отрезки O1A, O2B и OC перпендикулярны прямой a как радиусы, проведенные в точки касания.
Опустим перпендикуляр O1D из центра меньшей из данных окружностей на радиус O2B большей окружности и перпендикуляры OE и OF из точки O на радиусы O1A и O2B. Поскольку O1A // (палочи прямые) O2B , точки E, O и F лежат на одной прямой, а так как O1DFE — прямоугольник, то O1D=EF.
Кроме того: O1O = r+x, O1O2 = r+R , O2O = R+x , O1E = r-x , O2D = R-r , O1D =EF=EO+OF , O2F = R-x.
Далее имеем:
(R+r)^2 - (R-r)^2 (все выражение под корнем) = (r+x)^2 - (r-x)^2(все выражение под корнем) = (R+x)^2 - (R-x)^2;
2*Rx (Rx под корнем) = 2* rx (rx под корнем) + 2*Rx (Rx под корнем)
2. Пусть теперь окружность с центром O1 имеет радиус R, окружность с центром O имеет радиус r, а окружность центром O2 имеет радиус x и касается двух данных окружностей и их общей внешней касательной a (см. тот же рисунок). Аналогично случаю 1 имеем:
(x+R)^2 - (x-R)^2 (все выражение под корнем) = (R+r)^2 - (R-r)^2 (все выражение под корнем) + (x+r )^2 - (x-r)^2(все выражение под корнем) ;
2*Rx(Rx под корнем) = 2* Rr(Rr под корнем) +2*rx(rx под корнем)