Вспоминаем знаменитый "египетский" треугольник со сторонами 3, 4 и 5.
и формулу площади прямоугольного треугольника.
Формулы для вычисления на рисунке.
ответ: Площадь сечения 12 кв.см.
Объяснение:
podenkovaev314
01.02.2023
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
madjk
01.02.2023
Трапеция ABCD, угол D равен 60 градусов, диагональ BD делит этот угол пополам. AD = 14 см. Дано: Углы ADB = BDC = 60 / 2 = 30 градусов. Угол DBC = ADB = 30 градусов (как углы при параллельных прямых) Треугольник BCD равнобедренный с основанием BD, следовательно, BC = CD. Угол В трапеции равен 90 + 30 = 120 градусов, угол А равен 180 — 120 = 60 градусов. Трапеция равнобедренная, AB = BC = CD. AD = 2AB по законам прямоугольного треугольника. AB + BC + CD + AD = AB + AB + AB + 2AB = 5AB = 2,5AD = 2,5 * 14 = 35 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Диаметр основания конуса равен 8, а длина образующей — 5. Найдите площадь осевого сечения этого конуса. (распишите подробно
Вспоминаем знаменитый "египетский" треугольник со сторонами 3, 4 и 5.
и формулу площади прямоугольного треугольника.
Формулы для вычисления на рисунке.
ответ: Площадь сечения 12 кв.см.
Объяснение: