Объяснение:
Из вершины В параллелограмма проведем высоту ВН, которая одновременно высота треугольника АВМ и параллелограмма АВСД.
Воспользуемся формулой площади параллелограмма и выразим из нее высоту ВН.
Sавсд = АД * ВН.
ВН = Sавсд / АД = 60 / АД. (1).
Площадь треугольника АВМ будет равна: Sавм = АМ * ВН / 2.
По условию, АМ / МД = 3 / 2.
3 * МД = 2 * АМ.
МД = 2 * АМ / 3.
АМ = АД – МД.
АМ = АД - 2 * АМ / 3.
АД = 5 * 3 / АМ.
Тогда АМ = 3 * АД / 5.(2).
Подставим выражения 1 и 2 в формулу площади треугольника.
Sавм = (3 * АД / 5) * (60 / АД) / 2 = 180 / 10 = 18 см2.
ответ: Площадь треугольника равна 18 см2.
Поделитесь своими знаниями, ответьте на вопрос:
1. О(0; 0), А(6; 2), В (х; у) және С0; 6) нүктелері — параллелограмныңбірізді төбелері. В нүктесінің координаталарын табыңдар.
Два треугольника, которые можно совместить наложением, называются равными.
Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.
\boxtimes
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.
Теорема 3 (третий признак равенства треугольников — по трем сторонам)
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Запишите сокращенно условие и заключение теоремы.
Доказательство:
Для доказательства приложим треугольники большими сторонами. Треугольник A_1B_1C_1 займет положение AB_2C. Треугольник BAB_2 и треугольник BCB_2 — равнобедренные. Из равенства углов при основании получаем, что B=B_
Объяснение: