Объяснение:
1.Градусная мера дуги, на которую опирается центральный угол, равна 80 °. Определить градусную меру этого угл
а) 120° б) 80° в) 40°г) 50°
Центральный угол равен градусной мере дуги, на которую опирается. Поэтому ответ б) 80 градусов
2.Градусная мера центрального угла равна 120 °. Определить градусную меру дуги, на которую он опирается.
Из аналогичных соображений ответ г) 120 градусов.
а) 160° б) 90° в) 60°г) 120°
3.Градусная мера вписанного угла равна 140 °. Определить градусную меру дуги, на которую он опирается.
Вписанный угол равен половине градусной меры дуги на которую опирается. Поэтому градусная мера дуги равна 140*2 = 280 градусов. ответ в) 280 градусов.
а) 100° б) 70° в) 280°г) 140°
4.Градусная мера дуги, на которую опирается вписанный угол, равна 90°.Определить градусную меру этого вписанного угла.
Из аналогичных соображений, вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, угол равен 90/2 = 45 градусов. ответ б) 45 градусов.
а) 100° б) 45° в) 180°г) 90°
5.Определить градусную меру угла, вписанного в окружность, если соответствующий ему центральный угол равен 126 ° .
Центральный угол равен градусной мере дуги, на которую опирается, а вписанный угол половине дуги. Следовательно, вписанный угол равен половине центрального угла, опирающегося на ту же дугу. ответ а) 63 градуса.
а) 63° б) 252° в) 180°г) 126°
6.Определить градусную меру центрального угла окружности, если градусная мера соответствующего ему вписанного угла равна 40 ° .
Из аналогичных рассуждений, центральный угол в 2 раза больше вписанного угла, опирающегося на ту же дугу. ответ г) 80 градусов.
а) 40° б) 20° в) 140°г) 80°
Поделитесь своими знаниями, ответьте на вопрос:
Основа піраміди - прямокутний трикутник з катетом А і прилеглим до нього кутом 30 градусів. Бічні ребра нахилені до площини основи під кутом 60 градусів. Обчисліть обєм піраміди.
А) симметрия относительно прямой (осевая симметрия):
нужно провести перпендикуляр из точки к прямой и
отложить равные расстояния (до прямой и за прямой)
б) симметрия относительно точки (центральная симметрия):
нужно соединить точку с центром и
отложить равные расстояния (до центра и за центром)
это то же самое, что и поворот на 180°
в) параллельный перенос:
точка переносится в заданном направлении на заданное расстояние
г) поворот относительно центра:
нужно соединить точку с центром и построить заданный угол
от полученной прямой, расстояния тоже сохраняются...