Площадь боковой поверхности пирамиды ASTD - это сумма площадей боковых граней ATS, ADS и ATD, так как по принятому обозначению пирамиды ее вершина обозначается первой.
Площадь грани ADS (правильного треугольника) равна
Sads = √3*а²/4 = √3*100/4 = 25√3 см².
Площадь грани ATD (прямоугольного треугольника) равна
Satd = (1|2)*AT*AD = 30 см².
Площадь грани ATS равна
Sasb = Sads = 25√3 см², так как площади граней равны.
Площади треугольников АST и BST имеют общую высоту (высоту грани ASB) и относятся как стороны, к которым проведена эта высота, то есть Sats/Sbts = 3/2. А так как Sasb = Sats+Sbts, то
Sats/Sasb = 3/5. тогда
Sats = (3/5)*Sasb = (3/5)*25√3 = 15,5 см².
Площадь боковой поверхности пирамиды ASTD равна:
Sastd = 25√3 + 30 + 37,5 = 67,5+15√3 см².
P.S. На всякий случай:
Площадь грани STD можем найти по Герону.
По теореме косинусов в треугольнике AST:
ST² = √(AT²+AS²-2*AT*AS*Cos60). (угол SAT = 60, так как грани - правильные треугольники). Тогда
ST = √(136-2*AT*AS*(1/2)) = √76.
DT = √(AT²+AD²) = √136.
SD = 10.
Полупериметр равен (10+√136+√76)/2 и по Герону:
Sstd = √((10+√136+√76)*(10+√76-√136)*(10+√136-√76)*(√136+√76-10))/4 или
Чтобы выполнялось условие <BED=2<АСВ, построим на вершине С угол ВСF, равный двум углам С треугольника АВС. Проводя прямые параллельно прямой СF, мы видим, что если треугольник АВС равнобедренный с основанием АС, то условие задачи не может быть выполнено, поскольку прямая ЕD будет параллельна стороне ВС треугольника при любом положении точки Е на стороне ВС и точка D будет лежать на продолжении стороны АВ, а не на стороне, как дано в условии. Значит <A должен быть больше <C. Но в любом случае по теореме о неравенстве треугольника в треугольнике АЕС АС+ЕС>AE. Остается доказать, что AD ≤ AE. Рассмотрим остроугольный треугольник АВС. Продолжим прямую ЕD до пересечения с прямой СА в точке Р. Угол А треугольника острый, значит угол РАD - тупой, а угол АDЕ - еще тупее... (как внешний угол, равный сумме двух внутренних, не смежных с ним. В треугольнике АDЕ тупым может быть только один угол и он - больший. Против большего угла лежит большая сторона. Значит АЕ>AD и АС+ЕС>AD, что и требовалось доказать.
P.S. Можно отметить, что при <A=90° решение будет таким же, так как <ADE>90°, а если <A>90°, то возможен случай, когда AD>AE.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вершины треугольника лежат на сфере радиуса 10. Найти расстояние от центра сферы до плоскости треугольника если АВ=8, ВС=12, АС=16. С рисункам.
Sastd = 67,5+15√3 см².
Объяснение:
Площадь боковой поверхности пирамиды ASTD - это сумма площадей боковых граней ATS, ADS и ATD, так как по принятому обозначению пирамиды ее вершина обозначается первой.
Площадь грани ADS (правильного треугольника) равна
Sads = √3*а²/4 = √3*100/4 = 25√3 см².
Площадь грани ATD (прямоугольного треугольника) равна
Satd = (1|2)*AT*AD = 30 см².
Площадь грани ATS равна
Sasb = Sads = 25√3 см², так как площади граней равны.
Площади треугольников АST и BST имеют общую высоту (высоту грани ASB) и относятся как стороны, к которым проведена эта высота, то есть Sats/Sbts = 3/2. А так как Sasb = Sats+Sbts, то
Sats/Sasb = 3/5. тогда
Sats = (3/5)*Sasb = (3/5)*25√3 = 15,5 см².
Площадь боковой поверхности пирамиды ASTD равна:
Sastd = 25√3 + 30 + 37,5 = 67,5+15√3 см².
P.S. На всякий случай:
Площадь грани STD можем найти по Герону.
По теореме косинусов в треугольнике AST:
ST² = √(AT²+AS²-2*AT*AS*Cos60). (угол SAT = 60, так как грани - правильные треугольники). Тогда
ST = √(136-2*AT*AS*(1/2)) = √76.
DT = √(AT²+AD²) = √136.
SD = 10.
Полупериметр равен (10+√136+√76)/2 и по Герону:
Sstd = √((10+√136+√76)*(10+√76-√136)*(10+√136-√76)*(√136+√76-10))/4 или
Sstd = √((10+√76)²-136)*(136-(10-√76)²)/4 или
Sstd = √((20√76+40)*(20√76-40))/4 или
Sstd = √((30400-1600)/4 = √28800/4 = 120√2/4 =30√2.