Угол АОС=120° Меньшая дуга АC=120°,
большая дуга АC=360°-120°=240°
Возможны два случая расположения т.В.
а) Точка В расположена на большей дуге АС.
Точка В делит дугу 240° в отношении АВ=3 части, ВС=5 частей. ⇒
◡АВ=240°:8•3=90°; ◡ВС=240:8•5=150°.
Тогда в ∆ АВС его вписанные углы равны:
угол В равен половине центрального угла АОС=120°:2=60°.
Угол С равен половине центрального АОВ и равен 90°:2=45°.
Угол А=половине центрального СОВ и равен 150:2=75°⇒
Углы ∆ АВС равны 45°, 60°, 75°
б) Точка В расположена на меньшей дуге АС.
◡АВ=120°:8•3=45°; ◡ВС=120°:8•5=75°
Вписанные углы равны половине градусной меры дуг, на которые опираются.
∠А=75°:2=37,5°
∠С=45°:2=22,5°
∠В=240°:2=120°
Углы ∆ АВС равны 22,5°; 37,5°; 120°.
Поделитесь своими знаниями, ответьте на вопрос:
Диагональ равнобокой трапеции перпендикулярна боковой стороне и образует с основанием трапеции угол α. Найдите высоту трапеции, если радиус окружности, описанной около трапеции равен С РИСУНКОМ И С ДАНО НАПИШИТЕ ВООБЩЕ ТУПЛЮ НАПИШИТЕ ПОНЯТНЫМ ЯЗЯКОМ Сос
4) Примем угол А=а, угол В=b
В равнобедренном треугольнике углы при основании равны. ⇒
в ∆ АДС ∠АCD=∠CAD=а.
По условию СD=АD, а СD - медиана, и АD=ВD, ⇒ СD=ВD.
∆ ВDС равнобедренный. Углы при основании равнобедренного треугольника равны. ∠ВСD=∠СВD=b
Из найденного следует: угол С=а+b
Сумма углов треугольника 180°
Угол А+угол С+угол В=180° ⇒
а+b+a+b=180°
2a+2b=180°⇒
a+b=90° - угол С=а+b=90°
(Полезно помнить: Если в треугольнике медиана равна половине стороны, к которой проведена, этот треугольник – прямоугольный).
======
5) В ∆ АОС отрезок ОF перпендикулярен АС⇒ ОF – высота, а т.к. ∆ АОС равнобедренный (АО=ОС – дано), то ОF - медиана. ∆ АВF=∆ BCF– они прямоугольные с равными катетами: АF=FC (доказано), и ВF - общий, ⇒ АВ=ВС.
В равнобедренном ∆ АВС отрезок ВF- не только высота, но и медиана и биссектриса. Расстояние от точки до прямой - длина проведенного перпендикулярно к прямой отрезка.
Треугольники ВКО и ВМО прямоугольные с общей гипотенузой ВО и равным острым углом при В. Эти треугольники равны по углу и гипотенузе. Следовательно. ОМ=ОК=4.
≈≈≈≈≈≈≈≈
6) Медиана AF делит ВС на равные отрезки. BF=CF⇒
DF - медиана ∆ BDC и по свойству медианы прямоугольного треугольника равна половине гипотенузы
DF=ВС:2=5 (ед. длины)
======
8) Сумма острых углов прямоугольного треугольника 90°. ⇒
угол САВ=90°-34°=56°
Медиана СМ делит ∆ АВС на равнобедренные: ∆ АМС с углами при АС, равными 56°, и ∆ ВМС с углами при ВС, равными 34°.
Угол АСН=90°-56°=34°
∠НСМ=∠АСМ -∠АСН.
Угол НСМ=56°-34°=22°