Рассмотрим треугольник DAB и треугольник CBD. Найдем соотношение их соответствующих сторон: DA/CB=AB/BD=DB/CD 6/8=9/12=12/16, сократим дроби: 3/4=3/4=3/4. Получили, что стороны этих треугольников пропорциональны, значит треугольники подобны. У подобных треугольников соответствующие углы равны, значит угол ADB равен углу DBС. Но для прямых AD, BC и секущей BD – это накрест лежащие углы, а значит AD параллельна BC. AB не параллельна CD, так как если бы они были параллельны, то мы получили бы параллелограмм, а у него противолежащие стороны равны, что противоречит условию задачи. Значит наш четырехугольник – трапеция.
shoko91
06.07.2021
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.