Різниця зовнішніх кутів двох правильних многокутників ста-новить 24°, а різниця сум усіх внутрішніх кутів цих многокутниківстановить 720°. Визначте кількість сторін кожного многокутника.
Ромб - это параллелограмм, у которого все стороны равны.
Поэтому -
АВ = ВС = CD = AD.
Рассмотрим ΔАВС.
АС = АВ = ВС.
Следовательно, ΔАВС - равносторонний (по определению равностороннего треугольника).
Каждый угол равностороннего треугольника равен по 60°.
Отсюда -
∠ВАС = ∠В = ∠ВСА = 60°.
Диагональ ромба является биссектрисой его угла.
То есть -
∠А = 60°*2 = 120°.
Противоположные углы параллелограмма равны.
Следовательно -
∠В = ∠D = 60°
∠А = ∠С = 120°.
Отсюда острый угол ромба = 60°.
ответ :
60°.
Peshkov
16.11.2020
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Різниця зовнішніх кутів двох правильних многокутників ста-новить 24°, а різниця сум усіх внутрішніх кутів цих многокутниківстановить 720°. Визначте кількість сторін кожного многокутника.
Четырёхугольник ABCD - ромб.
Отрезки АС и BD - диагонали.
АС = АВ.
Найти :Острый угол = ?
Решение :Ромб - это параллелограмм, у которого все стороны равны.
Поэтому -
АВ = ВС = CD = AD.
Рассмотрим ΔАВС.
АС = АВ = ВС.
Следовательно, ΔАВС - равносторонний (по определению равностороннего треугольника).
Каждый угол равностороннего треугольника равен по 60°.Отсюда -
∠ВАС = ∠В = ∠ВСА = 60°.
Диагональ ромба является биссектрисой его угла.То есть -
∠А = 60°*2 = 120°.
Противоположные углы параллелограмма равны.Следовательно -
∠В = ∠D = 60°
∠А = ∠С = 120°.
Отсюда острый угол ромба = 60°.
ответ :60°.