19.1. Прямая пересекает окружность. Как называется фигура, яв-
ляющаяся пересечением (общей частью) этой прямой и круга,
ограниченного данной окружностью?
сегмент
19.2. Сколько касательных к данной окружности можно провести
через данную точку, расположенную:
а) внутри окружности;нисколько
б) вне окружности; бесконечно много
в) на окружности? - одну
19.3. Сколько можно провести окружностей, касающихся данной
прямой в данной точке? две (по одной с разных сторон прямой)
19.4. Сколько можно провести окружностей данного радиуса, каса-
ющихся данной прямой в данной точке? две (по одной с разных сторон прямой)
19.5. Какой угол образуют касательная к окружности и радиус,
проведенный в точку касания?
90°
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Сторона одного квадрата равна 7 см, а сторона другого квадрата равна 8 см. Найди сторону квадрата, равновеликого данным вместе взятым.
1.Дано:
∆DBC.
DK - биссектриса.
∠CDK = 37°
∠DKC = 105°
Найти:
∠С; ∠D; ∠K.
Решение.
Сумма углов треугольника равна 180°
=> ∠С = 180 -(37 + 105) = 38°
Т.к. DK - биссектриса => ∠D = 37 × 2 = 74°
∠К = 180 -(74 + 38) = 68° (из 1 строчки решения)
ответ: 68°
2.Дано:
∆АВС - равнобедренный.
ВС - основание.
ВМ и CN - биссектрисы.
ВМ ∩ CN = O
∠A = 68°
Найти:
∠СВМ; ∠ВОС.
Решение.
Т.к. ∆АВС - равнобедренный => ∠В = ∠С
180 - 68 = 112 - сумма ∠В и ∠С.
∠В = ∠С = 112 ÷ 2 = 56°
Т.к. BM - биссектриса => ∠СВМ = 56 ÷ 2 = 28°
=> ∠NCB = ∠CBM = 28° (т.к. ∠В = ∠С)
Сумма углов треугольника равна 180°
∠ВОС = 180 -(28 + 28) = 124°
ответ: 28°; 124°.
Извините,у меня получилось только так на рисунке.Вообще точки должны лежать на сторонах и прямые не должны заходить за стороны треугольника.