2) ΔАВС , АМ, СК ВД - медианы, пересекаются в точке О , ∠АОС=90° ,
АС=12 см . Найти: ВД .
ΔАОС - прямоугольный, ОД - медиана , проведённая из прямого угла АОС . Она равна половине гипотенузы АС, то есть ОД=12:2=6 см.
Медианы в точке пересечения делятся в отношении 2:1, считая от вершины, то есть ВО:ОД=2:1 . Значит, ВО=2·ОД=2·6=12 см .
Вся медиана ВД=ВО+ОД=12+6=18 см
3) АВСД - трапеция , ВС║АД , РТ - средняя линия трапеции ,
АС ∩ РТ= М , ВД ∩ РТ = К , ВС=4 см , АД=12 см . Найти МК .
Рассм. ΔАВС , РМ - средняя линия, РМ=0,5·ВС=0,5·4=2 см .
Рассм. ΔАВД , РК - средняя линия , РК=0,5·АД=0,5·12=6 см .
МК=РК-РМ=6-2=4 см .
Поделитесь своими знаниями, ответьте на вопрос:
CРОЧНО РЕШИТЕ ХОТЯ БЫ ОДНО УМОЛЯЮ(на скриншоте)
См. Объяснение.
Объяснение:
1) При пересечении AB и CD образуются два равных треугольника:
ΔАОС = ΔDОB, так как две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника (первый признак равенства треугольников), а именно:
АО = ОВ - согласно условию;
DO = ОС - согласно условию;
∠АОС = ∠DОB - как углы вертикальные.
2) В равных треугольниках против равных углов лежат равные стороны:
АС и BD лежат против равных углов ∠АОС и ∠DОB, следовательно:
АС=BD, - что и требовалось доказать.