Дано :
Четырёхугольник АВСD — прямоугольник.
Отрезки BD и AC — диагонали.
Точка О — точка пересечения диагоналей.
∠DOC = 20°.
Найти :
∠BDC = ?
∠DBC = ?
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Отсюда AO = OC = OD = OB.
Рассмотрим ∆ODC — равнобедренный (по определению).
Следовательно ∠ODC = ∠DCO (по свойству равнобедренного треугольника).
По теореме о сумме углов треугольника —
∠DOC + ∠ODC + ∠DCO = 180°
∠ODC + ∠DCO = 180° - ∠DOC = 180° - 20° = 160°
∠ODC = ∠DCO = 160°/2 = 80°.
Рассмотрим ∆BDC — прямоугольный.
По теореме о сумме острых углов прямоугольного треугольника —
∠BDC + ∠DBC = 90°
∠DBC = 90° - ∠BDC = 90° - 80° = 10°.
80°, 10°.
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что точки А (1, 1, 2), В (4, 5, -8), С (2, -1, 0) и D ( -1, -5, 10)являются вершинами параллелограмма.
Объяснение: квадрат диагонали параллелепипеда равен сумме квадратов его измерений:
Д²=дл²+шир²+выс²=
Д²=7²+6²+10²=49+36+100=185;
Д=√185см
Если нужно найти диагонали граней параллелепипеда, тогда обозначим его вершины А В С Д В1 С1 Д1. Диагональ ВД делит грань АВСД на 2 равных прямоугольных треугольника, в которых стороны основания являются катетами а диагональ гипотенузой. Найдём диагональ ВД грани АВСД по теореме Пифагора: ВД²=АВ²+АД²=6²+7²=36+49=
=85; ВД=√85см. Такая же величина диагонали у грани А1В1С1Д1. Теперь найдём диагональ грани АА1ВВ1 также по теореме Пифагора:
АВ1²=АВ²+АА1²=6²+10²=36+100=136;
АВ1=√136=2√34см. Такая же величина диагонали у грани Д1ДС1С. Диагонали одной грани равны между собой.
Диагональ грани АА1ДД1=АД²+ДД1²=
=7²+10²=49+100=149; ДД1=√149см
Диагональ ДД1=√149см