podenkovaev314
?>

найти отрезок. С решением:(​

Геометрия

Ответы

ikuvila5484

5)

Объяснение:

<ABK=30 градусов против его половина гипотинузы слудовательно AK=0.5*12=6см

AK=6см

По теорема Пифагора

BK^2=AK^2+AB^2

144=36+AB^2

AB^2=144-36

AB^2=108

AB=

6 \sqrt{3}

AB половина BCт.к BCA=30 градусов

Значит BC=2*6корень из 3

BC=

12 \sqrt{3}

ПО ПИФАГОРУ

BC^2=AB^2+AC^2

144*3=36*3+AC^2

432=108+AC^2

AC^2=432-108

AC^2=324

AC=18см

maksim1lssah575
Если прямая (DC),  параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость  проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC).
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3. 
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²

Умоляю, с обязательно рисунок и подробное решение сторона ав квадрата abcd лежит в плоскости α. прям
restkof
Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг.
Значит градусная мера дуги АВ плюс градусная мера дуги СD равна 120°.
Следовательно, сумма центральных углов <AОВ+<CОD=120°, а 0,5<AOB+0,5<COD=60°.
Пусть <AOB=α, a <COD=β тогда α/2+β/2=60°.
Длина хорды равна L=2R*Sin(α/2), где α - центральный угол, опирающийся на дугу, стягиваемую хордой.
В нашем случае:
11=2R*Sin(α/2) и 41=2R*Sin(β/2). Разделим первое уравнение на второе.
11/41=Sin(α/2)/Sin(β/2). Но β/2=60°-α/2. Тогда
11/41=Sin(α/2)/Sin(60-α/2) (1).
Пусть теперь α/2=γ (для простоты написания).
Далее сплошная тригонометрия.  
По формуле приведения: Sin(60°-γ)=Sin60°*Cosγ-Cos60°*Sinγ или
Sin(60°-γ)=(√3/2)*Cosγ-(1/2)*Sinγ. Подставим это значение в уравнение (1):
11/41=Sin(γ)/[(√3/2)*Cosγ-(1/2)*Sinγ] или
(11√3/2)*Cosγ-(11/2)*Sin(γ)=41Sin(γ) или (11√3)*Cosγ=93Sin(γ) (2).
Мы знаем, что Cos²γ+Sin²(γ)=1.
Тогда, возведя уравнение (2) в квадрат, получим:
363*(1-Sin²(γ))=8649*Sin²(γ). Отсюда Sin²(γ)=363/9012≈0,04, а Sin(γ)=0,2.
Помня, что мы приняли α/2=γ, имеем: 11=2R*Sin(γ) или R=11/2*0,2=27,5.
ответ: R=27,5.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

найти отрезок. С решением:(​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Malenyuk
shakhnina90
Tsevich333639
Avshirokova51
tanya62soldatova72
foto5113161
a1rwalk3r
karpov68
vsnimschikov391
Зинина-Олесия
Вайнер
abrolchik8511
natalya2321
rsd737
anyakru94