Четырехугольник АВ1А1В - трапеция, В1В и А1А - ее диагонали.
Треугольники, образованные отрезками иагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.( свойство трапеции).
Доказательство.
Рассмотрим ∆ АВ1А1 и ∆ ВВ1А1. У этих треугольников общее основание и высоты, равные высоте трапеции.
Формула площади треугольника S=a•h/2, где а - сторона треугольника, h- высота, проведенная к ней.
Если основания и высоты треугольников равны, их площади равны.
∆ АВ1А1= ∆ АВ1О+∆ В1ОА1
∆ ВВ1А1= ∆ ВОА1+∆ В1ОА1
Два треугольника с равной площадью состоят из частей, одна из которых - одна и та же. Следовательно, площади вторых частей этих треугольников равны.
S ∆ АОВ1=S∆ ВОА1, ч.т.д.
---------
Вариант – более короткое решение.
Каждая медиана треугольника делят его на два равновеликих ( равные высоты и основания).
S∆ ВCВ1=S ∆ АСА1=S ∆ АВС:2
Сумма площадей ∆ АОВ1+четырехугольника В1СА1О равна сумме площадей ∆ ВОА1+четырехугольника В1СА1О, равна половине площади ∆ АВС, из чего следует равенство площадей треугольников АВ1О и А1ВО
Поделитесь своими знаниями, ответьте на вопрос:
Реши сам: Задача 2. По данным рисунка найдите угол АНМ, если НМ – касательная к окружности
Соединим точку А с центром окружности О.
Δ АОН- равнобедренный /АН=ОН по условию./ В нем же ОА=ОН, как радиусы одной окружности. ⇒Все стороны равны. Треугольник равносторонний. Значит, и все углы А, Н, О равны по 60°, т.к. сумма углов треугольника 180°.
По свойству радиуса, проведенного к касательной в точку касания, ОН⊥МН, значит, ∠АНМ=90°-∠АНО=90°-60°=30°
ответ ∠АНМ=30°
/пропускаю доказательство того, что центральный угол АОН равен 60°/
Угол между касательной и хордой, проходящих через точку касания, измеряется половиной дуги, заключенной в нем, а это дуга АН, на нее опирается центральный угол АОН, который равен 60°, а половина его равна 30°
ответ ∠АНМ=30°