1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
Поделитесь своими знаниями, ответьте на вопрос:
Виконати задачі: 1) ABCD — тетраедр. Точки M і K — середини ребер DC і BC відповідно. Доведіть, що пряма MK паралельна площині ABD. 2) ABCDA1B1C1D1 — куб. Точки M і K — середини ребер B1C1 і А1D1 відповідно. Доведіть, що пряма MK паралельна площині A1АB
169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60
ответ:60 см2.