Что-то не так. Во-первых, опечатка - не призма, а пирамида. Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды. Значит, считаем, что это 4-угольная правильная пирамида. В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней). Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным. Нижние вершины куба лежат на средних линиях основания KM и LN. Справа я нарисовал сечение пирамиды плоскостью SLN. В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба, а основание PR = P1R1 = x√2 - диагонали грани куба. Теперь решаем задачу. Сторона основания пирамиды а, диагональ AC = BD = a√2, OC = a√2/2, угол наклона бокового ребра α. В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α. В треугольнике LOS катет OL = a/2, по теореме Пифагора SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α) SL = a/2*√(1 + 2tg α) Угол наклона апофемы к плоскости основания OLS = β: tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α В треугольнике RR1L катет RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α) Но мы знаем, что PR = x√2 и NP = RL. Получаем NL = NP + PR + RL a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
oduvanalex
26.10.2022
Начнем с самого простого: Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности. Rш=10см. Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см. Тогда его сторона равна Rк= 10√2см. Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3. Но можно и без формулы: по теореме косинусов. a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см. ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сторона правильного шестикутника 3 см. Знайдіть площу сегмента, основою якого є сторона шестикутника.
Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды.
Значит, считаем, что это 4-угольная правильная пирамида.
В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней).
Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным.
Нижние вершины куба лежат на средних линиях основания KM и LN.
Справа я нарисовал сечение пирамиды плоскостью SLN.
В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба,
а основание PR = P1R1 = x√2 - диагонали грани куба.
Теперь решаем задачу.
Сторона основания пирамиды а, диагональ AC = BD = a√2,
OC = a√2/2, угол наклона бокового ребра α.
В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α.
В треугольнике LOS катет OL = a/2, по теореме Пифагора
SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α)
SL = a/2*√(1 + 2tg α)
Угол наклона апофемы к плоскости основания OLS = β:
tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α
В треугольнике RR1L катет
RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α)
Но мы знаем, что PR = x√2 и NP = RL. Получаем
NL = NP + PR + RL
a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2