Средняя линия трапеции равна полусумме ее оснований. Меньшее основание нам известно и оно равно 10. Осталось найти большее основание. Опустим высоту трапеции, длина высоты будет равна меньшей стороне и равна 10. У нас получились квадрат и прямоугольный треугольник. Рассмотрим прямоугольный треугольник. Т.к. острый угол равен 45, то и другой равен 45 ( по сумме углов треугольника). Значит треугольник равнобедренный с катетами равными 10. Значит большее основание равно 10+10=20. Средняя линия трапеции равна (10+20)/2=15
Belokonev286
09.05.2021
В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой . Дано: DABC - равнобедренный; AB - основание. CD - медиана .
Док-ть: CD - высота и биссектриса .
Доказательство:
CA=CD - по условию РA= РB - по свойству равнобедренного треугольника AD=DB т. к. CD - медиана , ЮDCAD=DCBD (по 1-ому признаку равенства треугольников) ЮРACD= РBCD, РADC= РBDC РACD=РBCD Ю CD - биссектриса РACD и РBCD - смежные и равны Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дана трапеция ABCD с основаниями BC= 4 см и AD= 10 см. Высота BE проведена к основанию AD и равна 6 см. Вычисли площадь трапеции
Меньшее основание нам известно и оно равно 10. Осталось найти большее основание.
Опустим высоту трапеции, длина высоты будет равна меньшей стороне и равна 10. У нас получились квадрат и прямоугольный треугольник.
Рассмотрим прямоугольный треугольник. Т.к. острый угол равен 45, то и другой равен 45 ( по сумме углов треугольника). Значит треугольник равнобедренный с катетами равными 10.
Значит большее основание равно 10+10=20.
Средняя линия трапеции равна (10+20)/2=15