1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
Bni1504
19.11.2021
Первый Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный: 180-120 = 60 60:2 = 30 проведем высоту к хорде. малый треугольник - прямоугольник. Катет, лежащий напротив угла в 30, равен 1\2 гипотенузы: 0,8м = 80см 80:2 = 40см
Найдем второй катет по т.Пифагора: √(80²-40²) = √(6400 - 1600) = √4800 = √3*16*100 = 40√3 Найдем хорду: 40√3*2 = 80√3. Второй Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный: 180-120 = 60 60:2 = 30
По теореме синусов: b\sinb = c\sinc b = c*sinb/sinс b = 80*√3/2*2 = 80√3
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано: АВ⊥BD, CD⊥ВD, ∠ВАD = ∠ВСD (рисунок Докажите, что АD=ВС.
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам