ccc712835
?>

Прямоугольник с периметром, равным 28 см, стороны которого относятся как 3:4, вписан в окружность. Найдите площадь той части круга, которая находится вне прямоугольника.

Геометрия

Ответы

Лусине_Ильенков134

По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник.    Обозначим его вершины К, L, M и N.

Биссектрисы параллелограмма, являясь секущими,  отсекают от него равнобедренные треугольники  ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>

АВ=BQ=AT=CD=CR=DS=8   Тогда ВR=12-CR=4.  Аналогично  длина отрезков  QC,, DT,, AS равна 4.

Отрезки   QR и TS равны 12-2•4=4.  

По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и  ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.

В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND

Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD,  а BR║TD как лежащие на параллельных сторонах ABCD.

Из доказанного выше BL=RN. ⇒   BL=RN. ⇒

Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4

LN - диагональ прямоугольника  KLMN. Диагонали прямоугольника равны.

КМ=LN=4

Объяснение:

mouse-0211fsb3509

По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник.    Обозначим его вершины К, L, M и N.

Биссектрисы параллелограмма, являясь секущими,  отсекают от него равнобедренные треугольники  ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>

АВ=BQ=AT=CD=CR=DS=8   Тогда ВR=12-CR=4.  Аналогично  длина отрезков  QC,, DT,, AS равна 4.

Отрезки   QR и TS равны 12-2•4=4.  

По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и  ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.

В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND

Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD,  а BR║TD как лежащие на параллельных сторонах ABCD.

Из доказанного выше BL=RN. ⇒   BL=RN. ⇒

Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4

LN - диагональ прямоугольника  KLMN. Диагонали прямоугольника равны.

КМ=LN=4

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Прямоугольник с периметром, равным 28 см, стороны которого относятся как 3:4, вписан в окружность. Найдите площадь той части круга, которая находится вне прямоугольника.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

VladimirovnaSimonov
Эвелина
БеляковаСтаниславовна
lbeglarova6
petr2077
Джамалутдинова Докучаев
ogonizoloto
Татьяна_Полулях
Маркина Ворошилина
михаил
Yurok9872
Pochkun-Oleg
klkkan
blagorodovaanna375
mail66