У ΔABC ∠C = 80°. Знайдіть градусну міру ∠AOB, якщо O - точка перетину бісектрис зовнішніх кутів трикутника при вершинах A і B. https://imgur.com/a/sxlykMW - ссылка на фото триугольника
Диагональ ВD делит трапецию на два прямоугольных треугоьника АВD и ВDС. Так как сумма углов ВАD и ВСD равна 90°. и в то же время сумма острых углов этих треугольников также равна 90°, то угол АВD=ВСD, значит, и ∠ВDС=∠ВАD. Треугольники АВD и ВDС подобны. Из их подобия АD:ВD=ВD:ВС ВДD²=2 ВС Из треугольника ВСD по т. Пифагора ВС²=СD²-ВС² Но ВD²=2ВС Произведя в уравнении замену, получим: 2 ВС=СD²-ВС² ⇒ ВС²+2ВС-25=0 Решим квадратное уравнение. D=b²-4ac=2²-4·1·(-25)=104 ВС₁=(-2+2√26):2=√26-1≈ 4,099 Второй корень отрицательный и не подходит. По т.Пифагора найдем ВD. ВD²=2ВС=8,198 Из С параллельно ВD опустим отрезок С до пересечения с продолжением АD в точке Н. В прямоугольном треугольнике АСН гипотенуза АН=АD+DН DН=ВС=4,099 СН²=ВD²= 8,198 АС²=АН²+СН²=(2+4,099)²+8,198 АС²≈45,3958 АС≈6,7376 ---- [email protected]
elhovskoemodk
03.08.2022
1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
У ΔABC ∠C = 80°. Знайдіть градусну міру ∠AOB, якщо O - точка перетину бісектрис зовнішніх кутів трикутника при вершинах A і B. https://imgur.com/a/sxlykMW - ссылка на фото триугольника
Так как сумма углов ВАD и ВСD равна 90°. и в то же время сумма острых углов этих треугольников также равна 90°, то угол АВD=ВСD,
значит, и ∠ВDС=∠ВАD.
Треугольники АВD и ВDС подобны.
Из их подобия
АD:ВD=ВD:ВС
ВДD²=2 ВС
Из треугольника ВСD по т. Пифагора
ВС²=СD²-ВС²
Но ВD²=2ВС
Произведя в уравнении замену, получим:
2 ВС=СD²-ВС² ⇒
ВС²+2ВС-25=0
Решим квадратное уравнение.
D=b²-4ac=2²-4·1·(-25)=104
ВС₁=(-2+2√26):2=√26-1≈ 4,099
Второй корень отрицательный и не подходит.
По т.Пифагора найдем ВD.
ВD²=2ВС=8,198
Из С параллельно ВD опустим отрезок С до пересечения с продолжением АD в точке Н.
В прямоугольном треугольнике АСН гипотенуза
АН=АD+DН
DН=ВС=4,099
СН²=ВD²= 8,198
АС²=АН²+СН²=(2+4,099)²+8,198
АС²≈45,3958
АС≈6,7376
----
[email protected]