1. y=4-x², график парабола ветви направлены вниз
x | -2| -1 |0 | 1 | 2
y | 0 | 3 | 4 | 3 |0
2. границы интегрирования: 4-x²=0, x₁=-2, x₂=2. => a=-2, b=2
3. подынтегральная функция: y=4-x²
4. S= S_{-2} ^{2} (4- x^{2} )dx=(4x- \frac{ x^{3} }{3} )| _{-2} ^{2} =(4*2- \frac{ 2^{3} }{3} )-(4*(-2)- \frac{(-2) ^{2} }{3} )4.S=S
−2
2
(4−x
2
)dx=(4x−
3
x
3
)∣
−2
2
=(4∗2−
3
2
3
)−(4∗(−2)−
3
(−2)
2
)
=8- \frac{8}{3} +8- \frac{8}{3} =16- \frac{16}{3} = \frac{32}{3}=8−
3
8
+8−
3
8
=16−
3
16
=
3
32
S=10 \frac{2}{3}S=10
3
2
ед.кв.
1)Угол В равен 180 градусов - угол С - угол А = 180-90-60=30 градусов (по теореме о сумме углов треугольника)
2) Т.к АС лежит против угла В равного 30 градусам то АС=1/2АВ= 8СМ х 1/2= 4 см (по свойству прямоугольного треугольника)
ответ: 4 см.
Угол С = 90, угол А =60 следовательно угол В = 180 - (60+90)=30 градусов (по сумме углов треугольника) АВ - гипотенуза, угол А = 30 градусов следовательно АС = 1/2АВ (тк в прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы) Следовательно АС=1/2*8= 4 ответ 4
Поделитесь своими знаниями, ответьте на вопрос:
Даны две стороны треугольника TPR и медиана PS, проведённая к стороне TR. Даны следующие возможные шаги построения треугольника: 1. провести луч. 2. Провести отрезок. 3. Провести окружность с данными центром и радиусом. 4. На данном луче от его начала отложить отрезок, равный данному. 5. Построить угол, равный данному. 6. Построить биссектрису угла. 7. Построить перпендикулярную прямую. 8. Построить середину отрезка. 1. Напиши, в каком порядке следуют эти шаги в задаче, один и тот же шаг может повторяться. 2. У этой задачи 1)всегда одно решение 2)может не быть решения 3)иногда могут быть два решения
Объяснение:
У меня получилось так:
1) 1 4 8 3 3 2 2
2) 2 3