Поделитесь своими знаниями, ответьте на вопрос:
Самостоятельная работа по теме: признаки равенства прямоугольных треугольников Вариант 2 1) На рисунке АВ параллельно СD. Докажите, что BC=AD 2) Докажите, что два прямоугольных равнобедренных треугольника равны, если катет одного треугольника равен катету другого.
ВС=2*2=4 см, а АD=2*5=10 см.
Трапеция равнобедренная, значит высота ВН, проведенная у большему основанию, делит его на два отрезка, большй из которых равен полусумме оснований, а меньший - их полуразности.
Значит АН=(10-4):2=3 см. В прямоугольном треугольнике АВН катет АН равен половине гипотенузы АВ, следовательно, угол, против которого лежит этот катет (<ABH), равен 30° (свойство).
В прямоугольном треугольнике сумма острых углов равна 90°, значит
<A=90°-30°=60°.
Углы трапеции, прилежащие к боковой стороне, в сумме равны 180°.
Значит угол В=180°-60°=120°.
Так как трапеция равнобедренная, углы при основаниях равны.
ответ: <A=<D=60°, <B=<C=120°.