Объём цилиндра равен 432π cм³ ≈ 1357 см³
Объяснение:
Прямоугольный треугольник (основание призмы) вписан в основание цилиндра так, что гипотенуза этого треугольника равна диаметру цилиндра D.
Поскольку катет, прилегающий к углу 60º равен 6 см, то гипотенуза
D = 6 : cos 60° = 6 : 0.5 = 12 (см)
Большая грань призмы - прямоугольник со сторонами, равными D и H (Н - высота призмы и одновременно высота цилиндра)
Так как диагональ большей боковой грани призмы составляет с плоскостью её основания угол в 45º, то треугольник, образованный диагональю большей боковой гранью призмы , диаметром цилиндра и высотой цилиндра, является прямоугольным равнобедренным треугольником, то есть высота цилиндра равна его диаметру
Н = D = 12 cм.
Объём цилиндра равен
V = 0.25πD² · H = 0.25π · 12² · 12 = 432π (cм³) ≈ 1357 см³
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике ABC угол C=90 AB=10 AC=8. Найти косинус угла B, Синус угла B, тангенс угла A
1) уг АСВ = 180 - (10+4) = 180-14 = 166* ( по т о сумме углов в тр)
уг ВСЕ = 10+4 = 14* ( по св-ву внешнего угла тр)
уг ВСД = 14:2 = 7 * ( по опр биссектрисы угла)
2) уг ДВС = 180-10 = 170* ( по св-ву смежных углов)
3) тр СВД = тр СЕД ( по двум сторонам и углу м/д ними ВС=СЕ по усл, СД - бисс угла ВСЕ; СД - общая сторона) ⇒уг ВДС= уг ЕДС
4) тр СВД в нём: уг ДСВ=7* ( из1), уг ДВС= 170* ( из 2) ⇒ уг ВДС = 180-(170+7 ) = 3*
5) уг ВДС = уг ЕДС( из 3), ⇒ уг ВДЕ = уг ВДС * 2 ; уг ВДЕ = 3*2 = 6 градусов.
Задача 2
1) уг АСВ = 180-(48+19)=113* ( по т о сумме углов в тр)
уг ВСЕ = 48+19 =67 * ( по св-ву внешнего угла тр)
уг ВСД = 67:2 = 33,5 * ( по опр биссектрисы угла)
2) уг ДВС = 180-48 = 132* ( по св-ву смежных углов)
3) тр СВД = тр СЕД ( по двум сторонам и углу м/д ними ВС=СЕ по усл, СД - бисс угла ВСЕ; СД - общая сторона) ⇒уг ВДС= уг ЕДС
4) тр СВД в нём: уг ДСВ=33,5* ( из1), уг ДВС= 132* ( из 2) ⇒ уг ВДС = 180-(132+33,5 ) = 14,5*
5) уг ВДС = уг ЕДС( из 3), ⇒ уг ВДЕ = уг ВДС * 2 ; уг ВДЕ = 14,5*2 = 29 градусов.