Число пересечений не параллельных прямых можно представить в виде прогрессии. Где N - число прямых. Аn это N-й член прогрессии или число пересечений N прямых. Тогда Аn = Аn-1 + (N - 1), где Аn-1 - предыдущий член прогрессии. (N - 1) это, как постоянный член арифметической прогрессии, но здесь он меняется, поэтому найти любой член формулами арифметической прогрессии у меня пока не получается, но можно посчитать вручную или забить формулу в Exel. Например для 2х прямых формула принимает вид 0+2-1=1 и т. д. Для десяти прямых - 45 пересечений.
Теперь три прямых, которые пересекаются в 1й точке теряют 2 пересечения. Это число нужно вычесть из общей суммы.
komplekt7
19.10.2020
Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
ответ : 26.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
B треугольнике ABC AB > BC > AC. Найдите углы A, B и C, если известно что один из углов треугольника равен 102°, а другой 21°. ∠ A = ∠ B = ∠ C =
43
Объяснение:
Число пересечений не параллельных прямых можно представить в виде прогрессии. Где N - число прямых. Аn это N-й член прогрессии или число пересечений N прямых. Тогда Аn = Аn-1 + (N - 1), где Аn-1 - предыдущий член прогрессии. (N - 1) это, как постоянный член арифметической прогрессии, но здесь он меняется, поэтому найти любой член формулами арифметической прогрессии у меня пока не получается, но можно посчитать вручную или забить формулу в Exel. Например для 2х прямых формула принимает вид 0+2-1=1 и т. д. Для десяти прямых - 45 пересечений.
Теперь три прямых, которые пересекаются в 1й точке теряют 2 пересечения. Это число нужно вычесть из общей суммы.