hbqhzwtd
?>

Можно решение всех задач?? Очеень

Геометрия

Ответы

echervyakov
Допустим 3 см - длина основания. Тогда длины боковых сторон найдём из уравнения 2х+3=18, где х - длина боковой стороны.
2х=18-3=15
х=15/2=7,5 (см) - не подходит по условию задачи, так как длины сторон должны быть целочисленными.
Значит, 3 см - длина боковой стороны. Длина другой боковой стороны также равна 3 см. Тогда длину основания найдём из уравнения 3+3+х=18, где х - длина основания.
х=18-3-3=12 (см).
ответ: две другие стороны равны 3 см и 12 см.
* Замечу, что такого треугольника не может быть, так как в соответствии с неравенством треугольника сумма меньших сторон любого треугольника должна быть больше большей стороны треугольника. В нашем случае должно быть, чтобы 3+3>12, то есть 6>12, а это ложь.
Поэтому ответом должно быть пустое множество.
deadnobody

(Отметим, что в условии опечатка и N=M - середина АС)

В правильном тетраэдре все грани - правильные треугольники. 

М середина АС, ⇒,SM- медиана и высота треугольника ASC, 

а ВМ - медиана и высота треугольника АВС.

В равных треугольниках высоты равны.

 SM=BM=AB•sin60º= (4√3):2 =2√3⇒

Треугольник SMB- равнобедренный. 

О- центр основания⇒т.О – центр вписанной в правильный треугольник окружности и лежит в точке пересечения биссектрис ( для правильного треугольника они же - медианы и высоты).

Тогда МО=МВ:3 ( свойство медианы)=(2√3):3 = 2:√3

 По т. Пифагора SO=√(SM² - MO²) = (4√2):√3                              

Тогда РО=SO:4= √2:√3                                   

Из ∆ МРО по т.Пифагора MP=√(PO² +MO²)=√(2/3+4/3)=√2

sin∠ PMO= PO:MP=  (√2 : √2): √3 = 1/√3                                                          

Тогда НВ:МВ=1/√3, откуда НВ=2√3•1/√3=2

НВ - половина SB, поэтому МН - медиана ∆ SMB, а т.к. этот треугольник равнобедренный, то МН - его высота и перпендикулярна SB.

Точка Р принадлежит МН, и прямая МР перпендикулярна SB. ч.т.д.



Дан правильный тетраэдр, всё рёбра - 4. т. n - середина ac, o - центр основания. p принадлежит so и

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Можно решение всех задач?? Очеень
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kol-nat26
hachatryanlilit1983
marat-dzhanibekov
kashxb2056
Александровна1244
snopok66
Kushchenko-Monashev
leobashkurov1089
Vyacheslavovna
Vova220
byfetvostochniy
Yurevna991
anazarov80
mmurzina
Vladimirovich Aleksandr1889