slavutich-plus2
?>

Докажите равенство углов AMK и BMK, изображенных на рисунке, если AK = BCи

Геометрия

Ответы

lenacari

Пусть ABC - равнобедренный

∟B = 120 °, АС = 18 см, АК - высота.  

В ΔАВС проведем высоту BD к основанию АС.  

По свойству равнобедренного треугольника BD - биссектриса и медиана

AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).  

∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).  

Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):  

∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).  

Рассмотрим ΔАКС (∟К = 90 °, АК - высота):  

АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).

ответ: Высота AK= 9 см

Олег86
Дан квадрат АВС1Д1. О1О2 - ось цилиндра. АВ⊥О1О2.
Диагонали квадрата пересекаются наоси цилиндра в точке О. 
Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2.
Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД.
Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R.
В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2).
В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4.
AM=a√2·sinα/2
ответ: радиус цилиндра\frac{a \sqrt{2} sin \alpha }{2}

Усі вершини квадрата сторона якого а лежать на бічній поверхні циліндра вісь якого перпендикулярна д

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Докажите равенство углов AMK и BMK, изображенных на рисунке, если AK = BCи
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

fox-cab3444
qadjiyevaaynura
vasilevam
katdavidova91
Кирьяков-Крикунов
lobanosky162
gymnazium
dentalfamily
Aleksandrovich1415
eleniloy26
ekaterinava90
Евгения-Валерий
mishagoride885
nadejdashin508
me576