Решение, я думаю, довольно простое. Не нужны формулы, просто включаем мозги. Итак, есть выпуклый многоугольник. как подсчитать , сколько диагоналей можно провести из одного угла? Этот угол не в счет. Значит, "минус один". К соседним двум тоже не проведешь диагональ, т.к. это будут стороны. Значит, еще минус два. Итого минус три . к остальным проводятся. Т.е. у такого n-угольника можно из каждого угла провести (n-3) диагонали, а таких углов n? тогда диагоналей будет n*(n-3) но некоторые начинают повторяться . С 1-го и 2-го угла можно провести n-3, с 3-го n-4 и т.д. до n-2 угла. С него проводится только 1 диагональ. Т.е. считая с конца, можно провести 1+2+3+...+(n-3) (это со 2-го угла) + (n-3) (это с первого) . Получается арифметическая прогрессия S= и еще плюс (n-3)
где n-кол-во углов у нас n=15+3=18 тогда диагоналей 135 вроде так
Aleksei806
19.02.2021
Объем такого параллелепипеда равен произведению его трех измерений. одно из этих измерений равно 11см. пусть оставшиеся измерения равны x и y. тогда периметр параллелепипеда равен 4*x+4*y+4*11 =96см. или x+y=13 см. (1) х=13-y (2). площадь полной поверхности параллелепипеда: s=2*(11*x)+2*(11*y)+2*x*y=370 см². или 11*x+11*y+x*y=185 см². или 11(x+y)+x*y=185 см². подставим значение (1): 11*13+x*y=185 => x*y=42. подставим значение из (2): y²-13y+42=0. решаем это квадратное уравнение: y1=(13+√(169-168)/2 = 7см. => x1=6см y2=(13-1)/2=6см. => x2 =6см. тогда объем параллелепипеда равен 6*7*11=462см³. ответ: v=462см³.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Шар разделен секущей плоскостью на две части объемы которых равно 12 дм в кубе 24 дм в кубе Найдите площадь полученного в сечения Круга
Итак, есть выпуклый многоугольник. как подсчитать , сколько диагоналей можно провести из одного угла? Этот угол не в счет. Значит, "минус один". К соседним двум тоже не проведешь диагональ, т.к. это будут стороны. Значит, еще минус два. Итого минус три . к остальным проводятся. Т.е. у такого n-угольника можно из каждого угла провести (n-3) диагонали, а таких углов n? тогда диагоналей будет n*(n-3)
но некоторые начинают повторяться . С 1-го и 2-го угла можно провести n-3, с 3-го n-4 и т.д. до n-2 угла. С него проводится только 1 диагональ. Т.е. считая с конца, можно провести 1+2+3+...+(n-3) (это со 2-го угла) + (n-3) (это с первого) . Получается арифметическая прогрессия S= и еще плюс (n-3)
где n-кол-во углов
у нас n=15+3=18
тогда диагоналей 135
вроде так