Поделитесь своими знаниями, ответьте на вопрос:
1) В прямоугольном треугольнике угол между биссектрисой и высотой, проведенными из вершины прямого угла, равен 17. Найдите больший острый угол данного треугольника. 2) В прямоугольном треугольнике ВКС гипотенуза СВ равна 14, 4 см, катет ВК равен 7, 2 см, КМ – высота. Найдите расстояние от точки М до прямой КС
По условию составим систему уравнений и решим ее.
b + a = 15
b - a = 9
сложим уравнения: 2b = 24; b = 12; ⇒ a = 3. Основания трапеции 12 и 3.
В трапецию вписана окружность, значит суммы противоположных сторон равны. a + b = m + n = 15.
Трапеция равнобедренная. ⇒ m = n = 15/2 = 7,5
Диаметр вписанной окружности равен высоте трапеции D = h.
В прямоугольном треугольнике гипотенуза = m = 7,5; меньший катет = (b-a)/2 = 4,5; больший катет равен высоте трапеции и диаметру вписанной окружности.
По т. Пифагора: D = h = √(7,5² - 4,5²) = 6
Диаметр вписанной окружности = 6.