ответ:периметр равен 28
Объяснение:
Смотри, АД=6см,т.к.АЕ=ЕД. Значит,АД=ВС=6см(по свойству параллелограмма)
Теперь проведём через точку О прямую НZ,параллельную АД.
У тебя получится параллелограмм АНЕО,где ЕО=АН=4см(опять же свойство параллелограмма)
Теперь посмотри на отрезок ЕО и продли его до ВС. Ты нарисовал/а среднюю линию параллелограмма. Из этого следует,что вся линия будет равна 8 см. Запомни,что в точке пересечения диагоналей параллелограмма его средние линии делятся пополам(нам учительница по геоме рассказывала). Из этого выходит,что АН=НВ=4, а вся сторона параллелограмма будет равна 8.
Найдём периметр параллелограмма:
6см+6см+8см+8см=28см.
Поделитесь своими знаниями, ответьте на вопрос:
Даны две окружности. Вторая окружность имеет центр O на первой окружности и касается ее диаметра AB в точке M. Найди длину второй окружности, если AM = m? BM = n.
Формула вычисления длины окружности, зная радиус окружности:
Для начала определим вид треугольника.
Нам уже дано, что около трапеции однозначно описана окружность.
А окружность можно описать только около равнобедренной трапеции!.
Что и означает, что боковые стороны равны — 6; 6.
Другого выбора у нас нет, кроме как объявить, что одно из оснований ровно боковой стороне — 6, а второе основание равно: 12.
Формула вычисления радиусa описанной окружности около равнобёдренной трапеции — такова:
Тоесть, для вычисления этого радиуса — нам должны быть известны основания трапеции, боковая сторона, и! диагональ.
Обозначения сторон: боковые равные стороны равны: "c"; большее основание равно: "b"; меньшее основание равно: "b".
Формула вычисления диагонали равнобедренной трапеции такова:
А в этой формуле, переменные таковы: обе боковые стороны обозначаются как "a"; верхнее основание, которое равно боковой стороне — обозначается как "b"; основание с длиной в 12 см — обозначается как "c".
Теперь, зная все стороны трапеции, и диагональ — найдём радиус:
Теперь, зная радиус — найдём длину окружности:
Вывод: L = 37.63.