Найдите угол между диагональю AC¹ прямоугольного параллелепипеда ABCDA₁B₁C₁D₁ и прямой BC, если AB=1, BC=3 и AA₁=корень из 2. ----------- Чтобы найти угол между скрещивающимися прямыми, нужно провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся прямые, которые пересекутся под искомым углом, т.е. угол между ними будет равен углу между исходными скрещивающимися. Прямая, параллельная ВС, в параллелепипеде уже есть. Это ребро АД. Оно пересекает АС₁ и образует с ним угол ДАС₁, который равен искомому. Синус этого угла равен отношению ДС₁:АС₁ ДС₁- диагональ прямоугольника СДД1С₁ и является гипотенузой прямоугольного треугольника ДСС₁ По т. Пифагора ДС1=√(СД²+ДС₁²)=√(1+2)=√3 Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. АС₁²=АВ²+ВС²+АА₁²=1+9+2=12 АС₁=2√3 sin ∠ДАС₁= ДС₁:АС₁=(√3):2√3=1/2. Это синус угла, равного 30° ответ: Искомый угол равен 30°
jnrhjq3597
04.12.2022
1. В основании правильной треугольной пирамиды - правильный треугольник, а высота проецируется в его центр. SO - высота пирамиды, ОС - проекция SC на плоскость основания, значит ∠SCO - угол наклона бокового ребра к плоскости основания - искомый. ОС - радиус окружности, описанной около правильного треугольника: ОС = АВ√3/2 = 6√3/3 = 2√3. ΔSOC: ∠SOC = 90°, ctg∠SCO = OC / SO = 2√3 / 8 = √3/4
2. Основание правильной четырехугольной пирамиды - квадрат, боковые грани - равнобедренные треугольники. Пусть Н - середина CD, тогда SH - медиана и высота равнобедренного треугольника SDC, ОН - средняя линия ΔADC, ⇒ ОН║AD, ⇒ OH⊥CD. Значит ∠SHO - линейный угол двугранного угла наклона боковой грани к основанию - искомый. Радиус окружности, описанной около квадрата, равен половине его диагонали, значит АС = 8. АС = АВ√2 ⇒ АВ = АС/√2 = 8 / √2 = 4√2 - сторона квадрата ОН = AD/2 = 2√2 ΔSOH: ∠SOH = 90°, cos∠SHO = OH / SH = 2√2/7
3. Sбок = 2πRH = 160π см² ⇒ 2RH = 160 см² ABCD - осевое сечение. Sabcd = 2R·H = 160 см² ABEF - сечение, параллельное оси и отстоящее от нее на 6 см. Так как H = R - 2,то 2R(R - 2) = 160 R² - 2R - 80 = 0 D = 4 + 320 = 324 R = (2 + 18)/2 = 10 см R = (2 - 18)/2 = - 8 - не подходит по смыслу задачи H = 10 - 2 = 8 см Если Н -середина ВЕ, то ОН = 6 см - расстояние от оси до сечения. ΔОНВ: ∠ОНВ = 90°, по теореме Пифагора НВ = √(ОВ² - ОН²) = √(100 - 36) = 8 см ВЕ = 2НВ = 16 см Sabef = BE · H = 16 · 8 = 128 см²
4. ΔАВС - данное сечение - равнобедренный треугольник (АВ = АС = l образующие) ∠АВС = ∠АСВ = 75°, ⇒ ∠ВАС = 30°. Sabc = 1/2 · AB · AC · sin ∠BAC = 16 см² l² · sin30° = 32 l² = 64 l = 8 cм ΔАОВ: ∠ВАО = 30° по условию. cos∠BAO = AO/AB cos30° = h/l ⇒ h = l · cos30° = 8√3/2 = 4√3 см r = OB = AB · sin30° = 8 · 1/2 = 4 см Площадь осевого сечения: Sakc = 1/2 · KC · AO = r · h = 16√3 см² Sполн = πr(l + r) = π · 4 · (8 + 4) = 48π см²
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
3. В треугольнике ABD AB=BD, а угол В— 100°?Виссектрисы углов A и D пересекаются в точке M. Найдитеугол AMD
........140°...........................