1) Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.
Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.
Поделитесь своими знаниями, ответьте на вопрос:
Сторона квадрата равна 1. Прямая проходит на расстоянии 1⁄2 от его центра и отсекает от квадрата треугольник. Найдите периметр этого треугольника.
ответ 1.
Объяснение:
Пусть прямая, проходящая через центр O квадрата ABCD, пересекает сторону AB. Опустим на неё перпендикуляры AP и BQ. Треугольники APO и OQB равны по гипотенузе и острому углу. Поэтому AP² + BQ² = AP2 + OP² = AO² = ½.