danya1509379
?>

Комектесисип жибересидерме ​

Геометрия

Ответы

shturman-765255

Там получается 2 прямоугольных треугольника, у который общая сторона - перпендикуляр. По теореме Пифагора находим перпендикуляр. Через 2 прямоугольника, у которых известен катет.

 

Если разность длин наклонных 5 см, то там, где проекция 7 см - гипотенуза равна х-5, а где проекция 18 см, - х. (чем больше проецкия, тем больше наклонная)


Итак находим перпердикуляр для каждого треугольника  и приравниваем... 


X^2-324= (x-5)^2-49

 

Отсюда Х= 30 см. - это мы нашли одну из наклонных.

 

По теореме пифагора 30^2=324-H^2

 

H= корень из 576 см

marani2

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Комектесисип жибересидерме ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

arteevdimon
Дмитрий74
Kulikov1065
stark11
Chernaya
Boris1247
filippovev1
viz-art-pnz1664
autofilters27
Кашихина
tribunskavictory
elyashatdinova
Inozemtseva Korolev1271
alekbur
olgakovalsky6