MN - средняя линия трапеции. Средняя линия проходит через центр вписанной окружности.
Отрезки касательных из одной точки равны, △BAC - равнобедренный. Параллельные линии отсекают от угла подобные треугольники. Средняя линия MN параллельна основаниям, основания параллельны BC, MN||BC => △MAN~△BAC, △MAN - равнобедренный. Центр вписанной окружности лежит на биссектрисе. Биссектриса в равнобедренном треугольнике является высотой и медианой, ∠BDO=90, BD=BC/2=a/2, MO=MN/2.
Радиус перпендикулярен касательной, ∠OBM=90.
Накрест лежащие углы при параллельных равны, ∠MOB=∠OBD.
△MOB~△OBD (по двум углам)
MO/OB=OB/BD <=> (MN/2)/r=r/(a/2) <=> MN=4r^2/a
В трапецию вписана окружность, h=2r.
S=MN*h =4r^2/a *2r =8r^3/a
Поделитесь своими знаниями, ответьте на вопрос:
Две прямые касаются окружности радиусом 9 см с центром о в точках N и К БЫСТР
АВСД - параллелограмм
Из точки В проведено 2 перпендикуляра на стороны АД и СД
Назовем их ВК и ВМ соответственно
ВК = 6
ВМ = 10
СД = АВ (как стороны параллелограмма)
Р = 2АВ + 2АД = 48
АВ + АД = 24
Диагональ ВД делит параллелограм на равные по площади треугольники с высотами ВК и ВМ
Площадь АВД = 1/2 * АД * ВК = 3 АД
Площадь ДВС = 1/2 * ДС * ВМ = 5 ДС = 5 АВ
сложим систему: 3 АД = 5 АВ АВ + АД = 24 АВ = 24 - АД 3 АД = 5(24 - АД) 3 АД = 120 - 5 АД 8 АД = 120 АД = 15 АВ = 24 - 15 = 9 Разность между смежными сторонами параллелограмма равна 15 - 9 = 6