Із точки В, що лежить поза колом, проведено дотичні ВМ і ВN такі, що ∠MBN = 60 градусів. Знайдіть відстань від точки В до центра кола, якщо радіус кола дорівнює 5 см *
Площадь прямоугольного треугольника равна половине произведения его катетов.
Пусть угол С=90°, угол А=30°.
Тогда ВС=12•sin30°=6 см
АС=12•cos30°=6√3 см
S(∆ABC)=AC•BC:2=36√3:2=18√3 см²
Равновеликие части означает равные по площади, т.е. каждая равна половине площади данного треугольника⇒
S/2=9√3 см² площадь кругового сектора окружности с центром в вершине А.
Одна из формул площади сектора круга:
S=πr*α/360°
отсюда находим радиус по известным площади и углу α=30°:
9√3=π•r²/12
r=√(108√3/π)=7,716 см
clic1968420
20.09.2020
Сечение конуса - ΔАВС с основанием АС=6√3 - хорда. равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3. tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α MO_|_(MABCD), МО - высота пирамиды. прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA MO=d*tgα/2
Vпир=(1/3)*Sосн*H Sосн=a², a- сторона основания пирамиды диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС² АВ=АС=а d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2 S=(d/√2)²=d²/2 Vпир=(1/3)*(d²/2)*(d*tgα/2) Vпир=(d³ *tgα)/12
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Із точки В, що лежить поза колом, проведено дотичні ВМ і ВN такі, що ∠MBN = 60 градусів. Знайдіть відстань від точки В до центра кола, якщо радіус кола дорівнює 5 см *
Площадь прямоугольного треугольника равна половине произведения его катетов.
Пусть угол С=90°, угол А=30°.
Тогда ВС=12•sin30°=6 см
АС=12•cos30°=6√3 см
S(∆ABC)=AC•BC:2=36√3:2=18√3 см²
Равновеликие части означает равные по площади, т.е. каждая равна половине площади данного треугольника⇒
S/2=9√3 см² площадь кругового сектора окружности с центром в вершине А.
Одна из формул площади сектора круга:
S=πr*α/360°
отсюда находим радиус по известным площади и углу α=30°:
9√3=π•r²/12
r=√(108√3/π)=7,716 см