номер 15
дано: угол ТЕR = 75 градусов
ER - бисектриса
ET = FR = EF
75+75=150 градусов - угол E
E=R, T=F
угол R = 150 градусов
360 - (150+150) = 60 градусов
60:2=30
угол T=30 градусов
угол F=30 градусов
номер 16 (тут я не знаю до конца, попробуй загуглить)
угол О = 115 градусов (и с одной стороны угла, и с другой так как углы вертикальны)
угол N=115 градусов (так же и с одной строны угла и с другой так как они тоже вертикальны)
угол E = угол M
номер 10
назовем среднюю точку - O
дано: угол NOM = 120 градусов
EN=FM
из-за вертикальности углов можно сказать, что угол EOF = 120 градусов
угол OEN= 90 градусов
угол MFO= 90 градусов
180-120=60 градусов : 2 = 30.
углы ONM, OMN= по 30 градусов.
угол N= 60, угол M= 60
180-(90+30)= 60 градусов.
углы EON и FOM = по 60 градусов на каждый угол.
180-120= 60 градусов, значит:
60 : 2 = 30.
Угол OEF = 30 градусов.
Угол OFE = 30 градусов.
Угол E = 90 + 30 = 120 градусов.
Угол F = тоже 120 градусов.
Поделитесь своими знаниями, ответьте на вопрос:
Решить задачу: Найдите углы треугольника АОВ, если СА- касательная, угол ВАС равен 70 градусов.
Призма
Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.Боковые ребра призмы равны и параллельны.
Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.Поверхность призмы состоит из оснований и боковой поверхности призмы. Боковая поверхность призмы состоит из параллелограммов.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой. В противном случае призма называется наклонной.
У прямой призмы боковые грани – прямоугольники.
Высота прямой призмы равна ее боковому ребру.
Прямая призма называется правильной, если она прямая, и ее основания — правильные многоугольники
Площадь поверхности и объём призмы
Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:
Параллелепипед
Параллелепипедом называется призма, основанием которой является параллелограмм.
Параллелограммы, из которых составлен параллелепипед, называются его гранями, их