11. Так как углы MSP и NSK равны, и оба угла содержат общую часть угол KSP=90 градусов, то равны и углы MSK и NSP
Сумма углов MSK, KSP и NSP равна 180°
Значит, сумма углов MSK и NSP равна 180-90=90°
Каждый из этих углов равен 90/2=45°
Искомый угол MSP состоит из углов MSK и KSP, Значит, равен 90+45=135°
12. Углы AMN и BMN равны между собой, так как каждый из них состоит из двух попарно равных углов.
Так как углы AMN и ВMN являются смежными и в сумме составляют развернутый угол, равный 180°, то каждый из них равен 180/2=90°
ответ: 135°; 90°, 90°
lakeeva90
05.05.2023
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Расстояния от вершин B и C треугольника ABC до прямой, содержащей биссектрису острого угла А, равны. Докажите, что АВ=АС.
11. Так как углы MSP и NSK равны, и оба угла содержат общую часть угол KSP=90 градусов, то равны и углы MSK и NSP
Сумма углов MSK, KSP и NSP равна 180°
Значит, сумма углов MSK и NSP равна 180-90=90°
Каждый из этих углов равен 90/2=45°
Искомый угол MSP состоит из углов MSK и KSP, Значит, равен 90+45=135°
12. Углы AMN и BMN равны между собой, так как каждый из них состоит из двух попарно равных углов.
Так как углы AMN и ВMN являются смежными и в сумме составляют развернутый угол, равный 180°, то каждый из них равен 180/2=90°
ответ: 135°; 90°, 90°