Через подобие треугольников образованных биссектрисами находим соотношение сторон четырехугольника, который одновременно является прямоугольником. Соответственно большая сторона к большей биссектрисе, и меньшая к меньшей биссектрисе, т.е. 1/7 и 1/5.
Находим биссектрисы:
Малая биссектриса B1=5*2*sin a/2.
Большая биссектриса B2=7*2*cos a/2.
Малая сторона А1=2*sin a/2.
Большая сторона А2=2*cos a/2
Площадь прямоугольника Sпр=2*sin a/2.* 2*cos a/2=4*sin a/2.*cos a/2
Соотношение: Sпар/ Sпр=35*sin a/(4*sin a/2.*cos a/2) используя формулу sin 2α = 2sinα cosα
Я надеюсь вы в силах начертить рисунок , поэтому я напишу только формулы . Точка пересечений диагоналей - O
а) У прямоугольника по 6 свойству точка пересечения делит диагонали на равные отрезки . Δ ABO = Δ CDO по 1 признаку равенства треугольников ( ∠BOA=∠COD как вертикальные , AO = BO = CO = OD) ∠ABD = ∠ ODC Δ BCO = Δ ADO по 1 призанку ( ∠AOD = ∠ COD как вертикальные , AO = BO = CO = OD) ∠BAC = ∠ DCA = ∠ ABD = 90 - ∠CBD = 90 - ∠ADB ∠ABO = 180 - 60 - ∠ BAO = 180 - 60 - ∠ ABO 2∠ABO = 120 градусов ∠ ABO = 60 Град ∠ADB = 180 - 90 - 60 = 30 Катет , лежащий напротив угла в 30 град , равен половине гипотенузы AO = BO = CO = OD = 17 Диагонали равны AO * 2 = 34
Б) Рассмотрим угол , который разделен в отношении 1:2 X + 2X = 90 3X = 90 X = 30 1 часть угла равна 30 град , а вторая 60 град Теперь посмотрим на ΔACD, его меньшая сторона лежит напротив угла 30 град , значит она равна половине диагонали . CD = 0.5 AC = AB Составим уравнение суммы диагоналей и 2ух меньших сторон x - половина диагонали 4x+ x + x = 24 6x = 24 x = 24 / 6 = 4 см Диагональ равна 2x 2x = 8 см ответ : 8 см.
Если что-то осталось непонятным , то напишите в Личные сообщения , чтобы я мог отредактировать ответ .
Powered by Plotofox.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сторона ромба утворюеть с диагоналями кути .яки видносяться як 7\2.знайти кути ци
Площадь параллелограмма Sпар=7*5*sin a=35*sin a
Через подобие треугольников образованных биссектрисами находим соотношение сторон четырехугольника, который одновременно является прямоугольником. Соответственно большая сторона к большей биссектрисе, и меньшая к меньшей биссектрисе, т.е. 1/7 и 1/5.
Находим биссектрисы:
Малая биссектриса B1=5*2*sin a/2.
Большая биссектриса B2=7*2*cos a/2.
Малая сторона А1=2*sin a/2.
Большая сторона А2=2*cos a/2
Площадь прямоугольника Sпр=2*sin a/2.* 2*cos a/2=4*sin a/2.*cos a/2
Соотношение: Sпар/ Sпр=35*sin a/(4*sin a/2.*cos a/2) используя формулу sin 2α = 2sinα cosα
Получаем:
Sпар/ Sпр=35*sin a/(4*sin a/2.*cos a/2)=35*2*(sin a/2.*cos a/2)/(4*sin a/2.*cos a/2)=35/2
ОТВЕТ: Sпар/ Sпр=35/2