Объем правильной треугольной призмы составляет 36√6 см ^ 3, но высота призмы составляет 4√2 см. Вычислите длины базового края призмы напишите полное решение)
Первое, что приходит на ум в случае с квадратом. Любой треугольник либо является прямоугольным, либо может быть представлен, как два прямоугольных треугольников с общим катетом, который можно считать высотой. Прямоугольный треугольник можно достроить до прямоугольника, при этом очевидно, что искомый треугольник будет занимать ровно половину этого прямоугольника, а значит и его площадь будет равна половине площади прямоугольника. Sпр = произведению сторон, Sпр тр = 1\2 *Sпр = 1\2 *произведение катетов. Любой из катетов по сути является высотой, а второй - основанием. В случае, когда искомый треугольник, как оговаривалось выше, не является прямоугольным, а представляется в виде двух прямоугольных, не трудно заметить, что две стороны прямоугольных, а именно их основание составляют основание исходного, а высоты этих треугольников совпадают с высотой исходного. Нагляднее показать формулой: S не пр = Sпр1 + Sпр2 = 1\2 *а*b + 1\2*b*c = 1\2*b*(a+c), где b - высота, а (a+c) - основание исходного треугольника. Понимаю, что в тексте не очень, но постарался донести идею. Трапеция аналогично представляется в виде двух треугольников и прямоугольника. Затем проводится аналогичное доказательство. Вот.
sanyaborisov910067
19.07.2022
1 Это ответ :) На самом деле тут нужна теория. 1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1. С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1. Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O. Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C. Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1. Само собой, плоскости AB1D1 и BDC1 параллельны. 2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1. Тогда из параллельности плоскостей AB1D1 и BDC1 AO/OO1 = A1M1/M1C1 = 1; CO1/OO1 = CM/MA = 1; То есть все три отрезка A1O = OO1 = CO1. Ясно, что OO1 - искомое расстояние между плоскостями (я напоминаю - A1C перпендикулярна обеим плоскостям). Вот, теория закончилась. Дальше решение :) A1C = 3, => OO1 = 1;
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Объем правильной треугольной призмы составляет 36√6 см ^ 3, но высота призмы составляет 4√2 см. Вычислите длины базового края призмы напишите полное решение)
Прямоугольный треугольник можно достроить до прямоугольника, при этом очевидно, что искомый треугольник будет занимать ровно половину этого прямоугольника, а значит и его площадь будет равна половине площади прямоугольника. Sпр = произведению сторон, Sпр тр = 1\2 *Sпр = 1\2 *произведение катетов. Любой из катетов по сути является высотой, а второй - основанием.
В случае, когда искомый треугольник, как оговаривалось выше, не является прямоугольным, а представляется в виде двух прямоугольных, не трудно заметить, что две стороны прямоугольных, а именно их основание составляют основание исходного, а высоты этих треугольников совпадают с высотой исходного.
Нагляднее показать формулой:
S не пр = Sпр1 + Sпр2 = 1\2 *а*b + 1\2*b*c = 1\2*b*(a+c), где b - высота, а (a+c) - основание исходного треугольника. Понимаю, что в тексте не очень, но постарался донести идею.
Трапеция аналогично представляется в виде двух треугольников и прямоугольника. Затем проводится аналогичное доказательство. Вот.