Как я понимаю задание, необходимо сначала найти образ прямой р при центральной симметрии относительно т.М, а затем осуществить параллельный перенос на вектор MN.
Возьмем две характерные точки прямой р:
А(0; -3) и В(1; -1). Найдем их образы при центральной симметрии отн.
т. М(-3; 5):
A': К вектору АМ (-3; 8) прибавляем такой же, получим вектор AA' (-6;16)
с координатами конца:
х - 0 = -6 х = -6.
у -(-3) = 16 у = 13
Итак A' (-6; 13).
B': К вектору ВМ (-4; 6) прибавляем такой же и получим вектор BB' (-8; 12) с координатами конца:
х - 1 = -8 х = -7
у -(-1) = 12 у = 11.
Итак B': (-7; 11).
Теперь совершим перемещение точек A', B' на вектор MN (4; -4):
Точка A' (-6; 13) перейдет в точку A" (-2; 9).
Точка B' (-7; 11) перейдет в точку B" (-3; 7)
Указанные точки принадлежат искомому образу p" данной прямой р. Найдем уравнение этого образа:
у = кх +b
-2k + b = 9, b = 13,
-3k + b = 7, k = 2.
ответ: у = 2х + 13
Поделитесь своими знаниями, ответьте на вопрос:
Решите задачи В равнобедренном треугольнике угол, противолежащий основанию, в 3 раза больше, чем угол при основании. Найдите углы треугольника. 2) В треугольнике ABC стороны AB = BC. Биссектриса угла С пересекает основание под углом 60°. Найдите все углы ΔABC.
АС = 3ВС, ВС = х, тогда х+а = 3х, х = а/2. Все три точки расположены на одной прямой АС.
Поместим начало координат в точку А. Тогда точки будут иметь координаты:
А(0;0), В(а;0), С(1,5а;0).
Выберем на плоскости произвольную точку М(х; у). Тогда:
МА^2 = x^2 + y^2
MB^2 = (x-a)^2 + y^2
MC^2 = (x - 1,5a)^2 + y^2
Тогда уравнение, приведенное в условии будет иметь вид:
x^2 + y^2 + 2x^2 - 4ax + 2a^2 +2y^2 + x^2 - 3ax + 2,25a^2 + y^2 - 20 = 0
Приведем подобные члены:
4x^2 + 4y^2 - 7ax + (4,25a^2 - 20) = 0 Или, поделив на 4 и выделив полный квадрат:
(x - (7a/8))^2 + y^2 = 5 +(13/64)a^2
Это уравнение окружности с центром в т. О( (7а/8); 0) и радиусом:
кор(5 +(13/64)a^2)