ответ: вектор ao₁ равен сумме векторов ½ ∙ ab, ½ ∙ аd и aa₁.
объяснение:
решение.
пусть дан параллелепипед abcda₁b₁c₁d₁ , где o₁ - точка пересечения диагоналей верхнего основания a₁b₁c₁d₁. чтобы разложить вектор ao₁ по векторам ad, ab, aa₁ построим о – точку пересечения диагоналей нижнего основания abcd. она является проекцией точки o₁ на нижнее основание. вектор ао равен вектору ½ ∙ ас, а вектор ас равен сумме векторов ab и аd по правилу параллелограмма, тогда вектор ао равен вектору ½ ∙ (ab + аd). в плоскости диагонального сечения аа₁с₁с вектор ao₁ равен сумме векторов ао и оо₁, но оо₁ = aa₁. получаем, что
вектор ao₁ равен сумме векторов ½ ∙ (ab + аd) и aa₁ или сумме векторов ½ ∙ ab, ½ ∙ аd и aa₁.
ответ: вектор ao₁ равен сумме векторов ½ ∙ ab, ½ ∙ аd и aa₁.
рассмотрим два треугольника aob и odc два треугольника соприкасаются друг с другом под некоторым углом. допустим что внешний угол равен противоположному внешнему углу тойсь aod = boc. стороны треугольника равны другому треугольнику тойсь угол ocd = oab угол одинаковый и треугольники подобные что и требовалось доказать.
2 паралелограм у которого есть 4 стороны которые верхняя и нижняя одинаковая и левая и правая одинаковая.
на рисунке диагональ выходящая с угла до противоположного угла есть и она находиться под одинаковым углом тойсь если одна сторона идентична другой то и вторая диагональ тоже будет и углы равные проведённым диагонален.
3 на рисунке изображен ромб который имеет 4 стороны которые 2 одинаковые и остальные 2 тоже одинаковые. тойсь если у него стороны две равные то и те две стороны будут равные что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Наибольшая диагональ правой шестиугольной призмы = 8 см, и соединяет с боковым ребром угол 90 градусов найдите объем призмы
она не может составлять 90 градусов угол
может быть вы имели ввиду 30?
нижнее основание abcdef верхнее a1b1c1d1e1f1
дана диагональ ad1 = 8
h=dd1=cos30*ad1=4
soc=
r=ad/2=sin30 * ad1 /2 = 2
soc=
v=