Окружность называется описанной вокруг прямоугольного треугольника, в том случае, если все вершины прямоугольного треугольника лежат на этой окружности.
Вокруг прямоугольного треугольника можно описать лишь одну окружность.
Формула для радиуса описанной вокруг прямоугольного треугольника окружности:
R = 1/2 * √(a*a + b*b),
где a,b - стороны треугольника.
Следует отметить, что диаметр описанной вокруг прямоугольного треугольника окружности равен гипотенузе прямоугольного треугольника.
Значит,надо найти гипотенузу.Сторона ,лежащая против угла в 30 градусов равна половине гипотенузы.Значит ,последняя равна 8 см,а радиус окружности,описанной вокруг этого треугольника равен 4
Поделитесь своими знаниями, ответьте на вопрос:
OE=4 см, ∠ABC=54°. Найти расстояние от точки О до прямой АВ и ∠ABO.
Медианы делятся точкой пересечения в отношении 2:1. Так как треугольник равнобедренный, то расстояния в 8 см будут до его боковых сторон, а 5 см - до основания. До вершины - 2*5=10 см. В равнобедренном треугольнике медиана на основание - его высота. Обозначив за Х половину длины основания, а за У отрезок боковой стороны, получим из двух прямоугольных треугольников с общей гипотенузой 5^2+X^2=8^2+Y^2. Вторую часть боковой стороны определим из треугольника К=V(10^2-8^2)=6 cm. Из треугольника, где катетом является высота, нахоим второе уравнение - 15^2+X^2=(6+Y)^2. Раскрыв скобки и прибавив по 200 к левой и правой частям первого уравнения, получим 36+12у+y^2=y^2+264, отсюда у=19 см, а подставив в первое уравнение значения у, найдем х=20 см. Тогда стороны равны - 25, 25 и 40 см.