Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см
Borisovich-Volobueva1803
11.10.2020
Сумма двух углов по одной стороне параллелограмма = 180° 1) если один угол = х°, то другой = 2х (по условию) х + 2х = 180 3х = 180 х = 60 2х = 120 Противолежащие углы параллелограмма равны, ⇒ углы параллелограмма = 60°; 120°; 60°; 120°
2) Если углы по одной стороне параллелограмма относятся как 4 : 5, значит один угол = 4 частям, то другой угол равен 5 частям. ⇒ 4 + 5 = 9 (частей) составляют 180° 180 : 9 = 20° приходятся на одну часть 20 * 4 = 80° - это один угол 20 * 5 = 100° - это другой угол, а т.к. противолежащие углы равны, то углы параллелограмма = 80°; 100°; 80°; 100°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника равны 4, 4, 6. Найдите радиус описанной окружности.
4.4.6 хахаххааххахвхахаха