ответ: АВС=94 град Можно решить в двух вариантах.Можно решить в двух вариантах. В D А С Дано: ∆ АВС СD – биссектриса ∟АDС=112° ∟BCD=18° Найти: ∟ АВС = ? Решение: 1 вариант: ∆ АВС=180°= ∟ВАС+ ∟ АВС+ ∟ АСВ. Отсюда ∟ АВС = 180 – (∟ВАС+ ∟ АСВ) ∟BCD=∟АCD ∟ АСВ= ∟BCD+∟АCD Т.к. СD – биссектриса и делит ∟ АВС пополам, то ∟BCD=∟АCD=18°. Тогда ∟ АСВ=18+18=36°. ∟ВАС=∟DАC ∟DАC= 180 – (∟АCD+∟АDC)=180-(18+112)=50°. ∟ АВС=180-(50+36)=94° 2 вариант: ∟ АВС=∟CBD ∟CBD=180-(∟BCD+∟BDC) ∟BDC=180 -∟АDC (∟АDB –смежный угол) = 180-112=68° ∟CBD=180-(18+68)= 94°
konnovakat1
22.12.2021
Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике АВС стороны АВ и ВС равны, угол В равен 76*. Биссектрисы углов А и С пересекаются в точке М. Найдите величину угла АМС. С рисунком!!)