Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
mouse-0211fsb3509
07.05.2021
Основания трапеции равны 16 и 18, одна из боковых сторон равна 4 корня из 2 , угол между ней и одним из основании равен 135. Найдите площадь трапеции.уже сначала задачи можно утверждать что боковые стороны равны (180-135=45)ведем высоту с тупого угла и получается прямоугольный треугольник =>известные стороны это боковая =4 корень с 2 см и еще новый маленький кусочек =1см по скольку 18 -16=2 а по скольку трапеция равносторонняя то 2/2=1высота в квадрате за т.Пифагора =( 4кореь с 2-1) в квадрате=18-1=17сама же высота=корень 17S=((18+16)/2)*корень 17=17 корень с 17 см