anechcak
?>

рисунок есть, с вас только решение !РАСПИСАННОЕ!, а с меня В равнобедренном треугольнике ABC с основанием BC биссектрисы BM и CN пересекаются в точке O. Найдите углы треугольников CBM и BOC, если ∠A = 68°

Геометрия

Ответы

Шавкат кызы
Построение ясно из рисунка.
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S  пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды  SABCD.

Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата  равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных  треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно,  SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.

Вправильной четырехугольной пирамиде sabcd основание abcd - квадрат со стороной 6, а боковое ребро р
Romanovna-yana

1. От точки А строим угол, равный данному (описано в первом

варианте) и на полученной второй его стороне откладываем отрезок

АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на

прямую "а". Для этого:

Из точки В проводим окружность любого радиуса R, чтобы пересекла

прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим

две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.

На пересечении прямых ВМ и "а" ставим точку С.

Соединяем точки А,В и С и получаем прямоугольный треугольник АВС

с прямым углом <C и с заданными гипотенузой и острым углом.

2.  На прямой  "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ  соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.

3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.

Соединив точки А,С и В получаем искомый треугольник.

P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

рисунок есть, с вас только решение !РАСПИСАННОЕ!, а с меня В равнобедренном треугольнике ABC с основанием BC биссектрисы BM и CN пересекаются в точке O. Найдите углы треугольников CBM и BOC, если ∠A = 68°
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

VSpivak3122
ravshandzon3019835681
Shipoopi8
anastasiavilina
taa19707470
Grishanin
Yelizaveta1848
innesagrosheva22
sergei-pletenev
Irina1435
mberberoglu17
brakebox
Savelieva24
mrilyushchenko6
turovvlad