Основание АD трапеции ABCD лежит в плоскости α .Через точки B и C проведены параллельные прямые , пересекающие плоскость α в точках E и F соответственно. а) каково взаимное расположение прямых EF и AB? б) Чему равен угол между прямыми EF и AB, если ABC = 150°? _____________ а) АД лежит в плоскости альфа. ВС параллельна АD, след, ВС параллельна плоскости α. По условию CF|| BE. Отрезки параллельных прямых, заключенные между плоскостью и параллельной ей прямой, равны. ВЕ параллельна и равна СF. Следовательно, СВЕF параллелограмм, ⇒ ЕF равна и параллельна ВС Две прямые, параллельные третьей прямой, параллельны между собой. АD|| ВС, ЕF || ВС след ЕF || АD. ЕF лежит в плоскости α, ВА пересекает ее в точке, не принадлежащей ЕF. Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются. ⇒ прямые EF и AB - скрещивающиеся. Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным. . Сумма углов при боковой стороне трапеции 180°. Угол ВАD=180º-150º=30° Проведем в плоскости ВЕF прямую ЕК, параллельную АВ. Т.к. ЕF|| АD, а ЕК || АВ, угол KEF=углу ВАD и равен 30° ------------- Если ВЕ и СF проведены в плоскости трапеции АВСD, ЕF будет лежать на АD и в этом случае EF и АВ лежат в одной плоскости и не параллельны. В этом случае АВ и EF пересекаются, и угол между ними равен 30º
svetlana-sharapova-762621
26.03.2020
1. сечение, проходящее через вершины B, B1, D - это диагональное сечение BDD1. Его площадь равна BD*BB1. Из прямоугольного треугольника ABD найдем BD: BD=17, тогда площадь сечения равна 17*21=357. 2. Диагональ правильной четырехугольной призмы BD1 наклонена к плоскости основания под углом 30, поэтому угол между диагональю призмы BD1 и диагональю основания B1D1 равен 30. Из полученного треугольника найдем диагональ призмы: 3. площадь боковой поверхности правильной шестиугольной призмы равна Р*Н: S=6*2*5=60. 4. Площадь основания равна 1/2*6*8= 24. Площадь боковой поверхности равна 288 - 2*24= 240. Площадь боковой поверхности равна Р*Н. Гипотенуза прямоугольного треугольника равна 10. Высота призмы равна 288/(6+8+10)=12.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Кабыргасы 5^3 дурыс алтыбурыш шенберге иштей сызылган, ал дурыс ушбурыш осы шенберге сырттай сызылган дурыс ушбурыштын кабыргасын тап
б) Чему равен угол между прямыми EF и AB, если ABC = 150°?
_____________
а) АД лежит в плоскости альфа. ВС параллельна АD, след, ВС параллельна плоскости α.
По условию CF|| BE.
Отрезки параллельных прямых, заключенные между плоскостью и параллельной ей прямой, равны. ВЕ параллельна и равна СF. Следовательно, СВЕF параллелограмм, ⇒ ЕF равна и параллельна ВС Две прямые, параллельные третьей прямой, параллельны между собой. АD|| ВС, ЕF || ВС след ЕF || АD.
ЕF лежит в плоскости α, ВА пересекает ее в точке, не принадлежащей ЕF. Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются. ⇒
прямые EF и AB - скрещивающиеся.
Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.
. Сумма углов при боковой стороне трапеции 180°.
Угол ВАD=180º-150º=30°
Проведем в плоскости ВЕF прямую ЕК, параллельную АВ.
Т.к. ЕF|| АD, а ЕК || АВ, угол KEF=углу ВАD и равен 30°
-------------
Если ВЕ и СF проведены в плоскости трапеции АВСD, ЕF будет лежать на АD и в этом случае EF и АВ лежат в одной плоскости и не параллельны. В этом случае АВ и EF пересекаются, и угол между ними равен 30º