1. AN = AB^2/AM = 3; MN = 2; => OB = 1;
=> угол BAO = 30 градусов; BH = AB*sin(30) = корень(3)/2;
2. О - центр правильного шестиугольника.
ОС = ОD = CD = OA; => OK = KD; => AK/KD = 3;
3. вот тут есть кое-что интересное. Построение такое - проводим ВР II CD, Р лежит на MN. Проводим PK II BA, K лежит на AD. Ясно, что PN = BC; => MP = (AD - BC)/2 = AK;
Трапеция KPND равна трапеции MBCN, то есть её площадь составляет 3/5 площади AMNP. Площадь параллелограмма AMPK, соответственно, составляет 2/5 от площади AMNP. Поскольку у этих фигур общая высота, отношение их площадей равно отношению средних линий.
Обдумайте это внимательно - речь идет о средних линиях параллелограмма (а параллелограмм - частный случай трапеции :)) AMPK, равной АК = МР = (AD - BC)/2; и средней линии трапеции KPND, то есть - трапеции MBCN, равной ((AD + BC)/2 + BC)/2 = (AD/4 + 3*BC/4);
(Я вынужден сделать замечание. Условие MN = 10 я намеренно не использую, хотя отлично вижу, что тут можно было бы подставить это значение.)
Итак, получилось (AD/2 + 3*BC/2)/(AD - BC) = 3/2; обозначим AD/BC = x;
(x/2 + 3/2)/(x - 1) = 3/2; x = 3;
Условие MN = 10 позволяет найти основания, равные 5 и 15.
Обозначим пирамиду МАВСD, МО - высота, МН - апофема ( высота боковой грани).
Апофема делит сторону основания пополам. ВН=СН.
Диагонали квадрата пересекаются под прямым углом и при пересечении делятся пополам.
∆ ВОС в основании - прямоугольный равнобедренный.
МН⊥ВС. ⇒ по т. о 3-х перпендикулярах ОН ⊥ ВС, ⇒ ОН — высота и медиана ∆ ВОС. По свойству медианы ОН=BH=CH.
ОН=√(МН²-МО²)=√(225-144)=√81=9
BH=OH=9
MB=√(MH²+BH²)=√(225+81)=√306=3√34
№2
Если боковые ребра пирамиды равны, то равны и их проекции. Тогда проекции боковых ребер равны радиусу описанной около основания окружности. Для прямоугольного треугольника радиус описанной окружности равен половине гипотенузы ( значит, равен и медиане).
Гипотенуза прямоугольного треугольника с катетами 6 см и 8 см равна 10 см (египетский треугольник).
Тогда высота МН ( и медиана ) ∆ АМВ=АВ=10 см. ВН=АН=5 см
АМ= √(MH²+AH²)=√(100+25)=5√5 см
№3.
В основании пирамиды равнобедренный прямоугольный треугольник АВС, угол С=90°, АС=ВС=6 см. Высота пирамиды - третье из смежных ребер=8 см.
Площадь полной поверхности - сумма площади основания и площадей боковых граней.
S осн=АС•BC:2=18 см²
Грани АМС=ВМС по равенству катетов.
S ∆ AMC=S ∆ BMC=6•8:2=24 см²
S AMB=MH•AB:2
AB=AC:sin45°=6√2
CH высота и медиана ∆ АСВ=АВ:2=3√2
Высота MH большей боковой грани S=√(CH*+MH*)=√(18+64)=√82
S∆AMB=6√2•√82=6√164=12√41
S полн=18+2•24+12√41=(66+12√41) см²
№4
S полн=Sбок+Sосн
Боковые грани этой правильной пирамиды равны. Обозначим её МАВС.
МН- высота и медиана боковой грани. АН=ВН=6 см
∆ АМВ - равнобедренный. Апофема МН=√( АМ²-АН²)=√64=8 см
Sбок=3•МН•АВ:2=144 см²
Sосн=АВ²•√3:4=36√3 см²
Sполн=144+36√3=36(4+√3) см²
№5
Параллелепипед прямоугольный, следовательно, основание и боковые грани прямоугольники, а ребра перпендикулярны основанию и являются высотами параллелепипеда.
Обозначим большую сторону основания АВ, меньшую - ВС, высоту АА1.
Угол А1ВА=60° (дано)
А1А=АВ•tg60°=5√3
Площадь основания АВ•BC=5•3=15 Оснований два. S=2•15=30 см²
Площадь боковой пов-сти АА1•2(AB+BC)=5√3•16=80√3 см²
Sполн=(30+80√3) см²
Поделитесь своими знаниями, ответьте на вопрос:
2. Точки O (0; 0), A (2; 5), B (14; 7) и C являются вершинами параллелограмма. Найдите абсциссу точки нужно
С (12 ; 2)
Объяснение: