По свойствам касательных к окружности мы знаем, что АВ=ВС. Посмотрим на треуг. АВС: он равнобедренный и прямоугольный, значит АК - высота и бессиктриса => ∠ВАК=∠САК=45 градусов.
Рассмотрим треуг. АСО: угол С=90 градусов(т.к. радиус перпендикулярен касательной), угол СОА=180-90-45=45 градусов, значит, треугольник АСО - равнобедренный и АС=СО, а СО=ВО=R.
Рассмотрим четырехугольник АВОС: все стороны равны, ∠А=90 градусов, ∠В=90 градусов, ∠С=90 градусов, значит ∠О=90 градусов => АВОС-квадрат => АО=ВС=10 см.
Вуаля;) Прикрепила картинку из интернета и нарисовала свою, чтобы понятнее было))) Удачи)
ответ: 10 см.
Поделитесь своими знаниями, ответьте на вопрос:
Привет, скриншот ниже, надеюсь
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42