violettamakhina2537
?>

В треугольнике АВС AF и СК – биссектрисы, точка О – точка их пересечения. Угол АВС равен 54 градуса. Из точки О на сторону АС опущен перпендикуляр ОЕ=4 см. Найти расстояние от точки О до стороны АВ и угол АВО.

Геометрия

Ответы

Станиславовна196
Вариант 1, при АВ>BC.
а)  В ∆ АВС отрезок EF - средняя линия, так как соединяет середины
сторон АВ и АС.
ЕF параллельна ВС. Отрезок MD - секущая.
Накрест лежащие углы при пересечении параллельных прямых секущей равны. ∠MDF=∠DMC.
По свойству касательных из одной точки СМ=CN и ∆ МСN - равнобедренный и углы при его основании MN равны (свойство): ∠NMC=∠MNC.
∠MNC=∠FND (вертикальные). Отсюда
∠MDF=∠FND. Треугольник DFN- равнобедренный с основанием DN, FN=FD. Что и требовалось доказать.
 
б)  В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине:
То есть CN = (AC + BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=FC-CN = AC/2 - (AC+BC-AB)/2 = AB/2-BC/2.
Но FN = FD (доказано выше) и
ED=EF+FD=EF+FN = BC/2+AB/2-BC/2=AB/2=BE.
Треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник  ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.

Для второго варианта, при АВ<ВС:
а). EF параллельна ВС, MN - секущая. <NDF=<NMC (соответственные углы). СМ=CN (касательные из одной точки) => треугольник MNC
равнобедренный и <NMC=<MNC (углы при основании). Отсюда <MNC=<NDF и треугольник DFN - равнобедренный с основанием ND.
FN=FD. Что и требовалось доказать.

б). CN = (AC+BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=CN-CF = (AC+BC-AB)/2 - AC/2 - = BC/2-АВ/2.
Но FN = FD (доказано выше) и
ED=EF-FD=EF-FN = BC/2-BC/2+АВ/2=AB/2=BE.
То есть треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник  ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.

Окружность, вписанная в треугольник abc , касается сторон bc и ac в точках m и n соответственно, e и
oaved2018
Ае  -высота,а значит медиана треугольника   то  следовательно делит вс пополам! рассмотрим треугольник асеп по  теореме пифагора ас^2=ae^2+ec^2                                  100=бе^2+64       аб  ^2=100-64                                                         бс^2=36             : )                

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В треугольнике АВС AF и СК – биссектрисы, точка О – точка их пересечения. Угол АВС равен 54 градуса. Из точки О на сторону АС опущен перпендикуляр ОЕ=4 см. Найти расстояние от точки О до стороны АВ и угол АВО.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ortopediya
liza04521160
parabolaspb
zakupki
izumrud153
dmitrymakarov003
zloshop9
os2854
nikomuneskazhu60
родичева1812
maxchemaxim14
gbfedak220
Irina
triumfmodern
retropluse832