Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
Поделитесь своими знаниями, ответьте на вопрос:
4. В окружности сцентром в точке О к хорде LM, равной радиусуокружности, перпендикулярно проведен диаметр EK. Диаметр EK и хорда LMпересекаются в точке А. Длина отрезка LA равна 11, 4 см.а) постройте рисунок по условию задачи;b) определите длину хорды LM, с) определите длину диаметра ЕК;d) найдите периметр треугольника OLM.
В треугольнике FK = 1,5 а FM = 2,5, не наоборот, так как FM - гипотенуза, она не может быть больше катета FK
Смотри, находим по теореме Пифагора катет MK
Синус - отношение противолежащего катета к гипоетнузе
Косинус - отношение прилежащего катета к гипотенузе
Тангенс - отношение противолежащего катета к прилежащему
Из этого мы получаем, что
sin F = MK/FM = 2/2,5 = 0,8
sin M = FK/FM = 1,5/2,5 = 0,6
cos F = FK/FM = 1,5/2,5 = 0,6
cos M = MK/FM = 2/25 = 0,8
tg F = MK/FK = 2/1,5 = 4/3
tg M = FK/MK = 1,5/2 = 0,75